Advertisement

Nano Research

, Volume 4, Issue 2, pp 204–215 | Cite as

Facile and scalable synthesis of a highly hydroxylated water-soluble fullerenol as a single nanoparticle

  • Ken Kokubo
  • Shogo Shirakawa
  • Naoki Kobayashi
  • Hisae Aoshima
  • Takumi Oshima
Research Article

Abstract

A water-soluble polyhydroxylated fullerene, i.e. a fullerenol, with 44 hydroxyl groups and 8 secondary bound water molecules, C60(OH)44·8H2O (estimated average structure), has been synthesized in a facile one step reaction from pristine C60 by hydroxylation with hydrogen peroxide in the presence of a phase-transfer catalyst, tetra-n-butylammonium hydroxide (TBAH), under organic/aqueous bilayer conditions. The fullerenol exhibited high water solubility, up to 64.9 mg/mL, under neutral (pH = 7) conditions. Dynamic light-scattering (DLS) analysis showed a narrow particle size distribution, of 1–2 nm, indicating that the fullerenol had high dispersion properties in water. The results of particle size analyses, which both focused on a single nanoregion and were conducted using a novel induced grating (IG) method and a scanning probe microscope (SPM), were consistent with the DLS results. A plausible reaction mechanism, which includes fullerene oxide intermediates detected by liquid chromatography-mass spectrometry (LC-MS), has been proposed.

Keywords

Fullerene fullerenol hydroxyl group nanoparticle water solubility 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2010_71_MOESM1_ESM.pdf (783 kb)
Supplementary material, approximately 936 KB.

References

  1. [1]
    Jiao, F.; Liu, Y.; Qu, Y.; Li, W.; Zhou, G.; Ge, C.; Li, Y.; Sun, B.; Chen, C. Studies on anti-tumor and antimetastatic activities of fullerenol in a mouse breast cancer model. Carbon 2010, 48, 2231–2243.CrossRefGoogle Scholar
  2. [2]
    Xu, J. -Y.; Su, Y. -Y.; Cheng, J. -S.; Li, S. -X.; Liu, R.; Li, W. -X.; Xu, G. -T.; Li, Q. -N. Protective effects of fullerenol on carbon tetrachloride-induced acute hepatotoxicity and nephrotoxicity in rats. Carbon 2010, 48, 1388–1396.CrossRefGoogle Scholar
  3. [3]
    Mikawa, M.; Kato, H.; Okumura, M.; Narazaki, M.; Kanazawa, Y.; Miwa, N.; Shinohara, H. Paramagnetic water-soluble metallofullerenes having the highest relaxivity for MRI contrast agents. Bioconjugate Chem. 2001, 12, 510–514.CrossRefGoogle Scholar
  4. [4]
    Chen, C.; Xing, G.; Wang, J.; Zhao, Y.; Li, B.; Tang, J.; Jia, G.; Wang, T.; Sun, J.; Xing, L.; Yuan, H.; Gao, Y.; Meng, H.; Chen, Z.; Zhao, F.; Chai, Z.; Fang, X. Multihydroxylated [Gd@C82(OH)22]n nanoparticles: Antineoplastic activity of high efficiency and low toxicity. Nano Lett. 2005, 5, 2050–2057.CrossRefGoogle Scholar
  5. [5]
    Aoshima, H.; Kokubo, K.; Shirakawa, S.; Ito, M.; Yamana, S.; Oshima, T. Antimicrobial activity of fullerenes and their hydroxylated derivatives. Biocontrol Sci. 2009, 14, 69–72.CrossRefGoogle Scholar
  6. [6]
    Chiang, L. Y.; Lu, F. -J.; Lin, J. -T. Free radical scavenging activity of water-soluble fulerenols. J. Chem. Soc., Chem. Commun. 1995, 1283–1284.Google Scholar
  7. [7]
    Dugan, L. L.; Gabrielsen, J. K.; Yu, S. P.; Lin, T. -S.; Choi, D. W. Buckminsterfullerenol free radical scavengers reduce excitotoxic and apoptotic death of cultured cortical neurons. Nerobiol. Dis. 1996, 3, 129–135.CrossRefGoogle Scholar
  8. [8]
    Sun, D.; Zhu, Y.; Liu, Z.; Liu, G.; Guo, X.; Zhan, R.; Liu, S. Active oxygen radical scavenging ability of water-soluble fullerenols. Chin. Sci. Bull. 1997, 42, 748–752.CrossRefGoogle Scholar
  9. [9]
    Lai, H. -S.; Chen, W. -J.; Chiang, L. -Y. Free radical scavenging activity of fullerenol on the iischemia-reperfusion intestine in dogs. World J. Surg. 2000, 24, 450–454.CrossRefGoogle Scholar
  10. [10]
    Guldi, D. M.; Asmus, K. -D. Activity of water-soluble fullerenes towards ·OH-radicals and molecular oxygen. Radiat. Phys. Chem. 1999, 56, 449–456.CrossRefGoogle Scholar
  11. [11]
    Xiao, L.; Takada, H.; Maeda, K.; Haramoto, M.; Miwa, N. Antioxidant effects of water-soluble fullerene derivatives against ultraviolet ray or peroxylipid through their action of scavenging the reactive oxygen species in human skin keratinocytes. Biomed. Pharmacother. 2005, 59, 351–358.CrossRefGoogle Scholar
  12. [12]
    Oberdörster, E. Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ. Health Perspect. 2004, 112, 1058–1062.CrossRefGoogle Scholar
  13. [13]
    Chiang, L. Y.; Wang, L. -Y.; Swirczewski, J. W.; Soled, S.; Cameron, S. Efficient synthesis of polyhydroxylated fullerene derivatives via hydrolysis of polycyclosulfated precursors. J. Org. Chem. 1994, 59, 3960–3968.CrossRefGoogle Scholar
  14. [14]
    Li, J.; Takeuchi, A.; Ozawa, M.; Li, X.; Saigo, K.; Kitazawa, K. C60 Fullerol formation catalysed by quaternary ammonium hydroxides. J. Chem. Soc. Chem. Commun. 1993, 1784–1785.Google Scholar
  15. [15]
    Schneider, N. S.; Darwish, A. D.; Kroto, H. W.; Taylor R.; Walton, D. R. M. Formation of fullerenols via hydroboration of fullerene-C60. J. Chem. Soc., Chem. Commun. 1994, 463–464.Google Scholar
  16. [16]
    Arrais, A.; Diana, E. Highly water soluble C60 derivatives: A new synthesis. Fuller. Nanotub. Carbon Nanostruct. 2003, 11, 35–46.CrossRefGoogle Scholar
  17. [17]
    Wang, S.; He, P.; Zhang, J. -M.; Jiang, H.; Zhu, S. -Z. Novel and efficient synthesis of water-soluble [60]fullerenol by solvent-free reaction. Synth. Commun. 2005, 35, 1803–1807.CrossRefGoogle Scholar
  18. [18]
    Vileno, B.; Marcoux, P. R.; Lekka, M.; Sienkiewicz, A.; Fehér, T.; Forró, L. Spectroscopic and photophysical properties of a highly deivatized C60 fullerol. Adv. Funct. Mater. 2006, 16, 120–128.CrossRefGoogle Scholar
  19. [19]
    Kokubo, K.; Matsubayashi, K.; Tategaki, H.; Takada, H.; Oshima, T. Facile synthesis of highly water-soluble fullerenes more than half-covered by hydroxyl groups. ACS Nano 2008, 2, 327–333.CrossRefGoogle Scholar
  20. [20]
    Zhang, G.; Liu, Y.; Liang, D.; Gan, L.; Li, Y. Facile synthesis of isomerically pure fullerenols and formation of spherical aggregates from C60(OH)8. Angew. Chem. Int. Ed. 2010, 49, 5293–5295.CrossRefGoogle Scholar
  21. [21]
    Husebo, L. O.; Sitharaman, B.; Furukawa, K.; Kato, T.; Wilson, L. J. Fullerenols revisited as stable radical anions. J. Am. Chem. Soc. 2004, 126, 12055–12064.CrossRefGoogle Scholar
  22. [22]
    Takaya, Y.; Tachika, H.; Hayashi, T.; Kokubo, K.; Suzuki, K. Performance of water-soluble fullerenol as novel functional molecular abrasive grain for polishing nanosurfaces. CIRP Ann.-Manuf. Tech. 2009, 58, 495–498.CrossRefGoogle Scholar
  23. [23]
    Saotome, T.; Kokubo, K.; Shirakawa, S.; Oshima, T.; Hahn, H. T. Polymer nanocomposites reinforced with C60 fullerene: Effect of hydroxylation. J. Compos. Mater., in press.Google Scholar
  24. [24]
    Saitoh, Y.; Xiao, L.; Mizuno, H.; Kato, S.; Aoshima, H.; Taira, H.; Kokubo, K.; Miwa, N. Novel polyhydroxylated fullerene suppresses intracellular oxidative stress together with repression of intracellular lipid accumulation during the differentiation of OP9 preadipocytes into adipocytes. Free Radic. Res. 2010, 44, 1072–1081.CrossRefGoogle Scholar
  25. [25]
    Matsubayashi, K.; Kokubo, K.; Tategaki, H.; Kawahama, S.; Oshima, T. One-step synthesis of water-soluble fullerenols bearing nitrogen-containing substituents. Fuller. Nanotub. Carbon Nanostruct. 2009, 17, 440–456.CrossRefGoogle Scholar
  26. [26]
    Xing, G.; Zhang, J.; Zhao, Y.; Tang, J.; Zhang, B.; Gao, X.; Yuan, H.; Qu, L.; Cao, W.; Chai, Z.; Ibrahim, K.; Su, R. Influences of structural properties on stability of fullerenols. J. Phys. Chem. B 2004, 108, 11473–11479.CrossRefGoogle Scholar
  27. [27]
    She, Y. -M.; Tu, Y. -P.; Liu, S. -Y. C118 from fullerenols: Formation, structure and intermolecular nC2 transfer reactions in mass spectrometry. Rapid Commun. Mass Spectrom. 1996, 10, 676–678.CrossRefGoogle Scholar
  28. [28]
    Chiang, L. Y.; Upasani, R. B.; Swirczewski, J. W.; Soled, S. Evidence of hemiketals incorporated in the structure of fullerols derived from aqueous acid chemistry. J. Am. Chem. Soc. 1993, 115, 5453–5457.CrossRefGoogle Scholar
  29. [29]
    Troyanov, S. I.; Troshin, P. A.; Boltalina, O. V.; Ioffe, I. N.; Sidorov, L. N.; Kemnitz, E. Two isomers of C60F48: An indented fullerene. Angew. Chem. Int. Ed. 2010, 40, 2285–2287.CrossRefGoogle Scholar
  30. [30]
    Tuinman, A. A.; Mukherjee, P.; Adcock, J. L.; Hettich, R. L.; Compton, R. N. Characterization and stability of highly fluorinated fullerenes. J. Phys. Chem. 1992, 96, 7584–7589.CrossRefGoogle Scholar
  31. [31]
    Rivelino, R.; Malaspina, T.; Fileti, E. E. Structure, stability, depolarized light scattering, and vibrational spectra of fullerenols from all-electron density-functional-theory calculations. Phys. Rev. A 2009, 79, 013201.CrossRefGoogle Scholar
  32. [32]
    Ros, D. T.; Prato, M. Medicinal chemistry with fullerenes and fullerene derivatives. Chem. Commun. 1999, 663–669.Google Scholar
  33. [33]
    Bolskar, R. D.; Benedetto, A. F.; Husebo, L. O.; Price, R. E.; Jackson, E. F.; Wallace, S.; Wilson, L. J.; Alford, J. M. First soluble M@C60 derivatives provide enhanced access to metallofullrenes and permit in vivo evaluation of Gd@C60[C(COOH)2]10 as a MRI contrast agent. J. Am. Chem. Soc. 2003, 125, 5471–5478.CrossRefGoogle Scholar
  34. [34]
    Mohan, H.; Palit, D. K.; Mittal, J. P.; Chiang, L. Y.; Asmus, K. -D.; Guldi, D. M. Excited states and electron transfer reactions of C60(OH)18 in aqueous solution. J. Chem. Soc., Faraday Trans. 1998, 94, 359–363.CrossRefGoogle Scholar
  35. [35]
    Wada, Y.; Totoki, S.; Watanabe, M.; Moriya, N.; Tsunazawa, Y.; Shimaoka, H. Nanoparticle size analysis with relaxation of induced grating by dielectrophoresis. Opt. Express 2006, 14, 5755–5764.CrossRefGoogle Scholar
  36. [36]
    Everett, A. J.; Minkoff, G. J. The dissociation constants of some alkyl and acyl hydroperoxides. Trans. Faraday Soc. 1953, 49, 410–414.CrossRefGoogle Scholar
  37. [37]
    Gao, X.; Ishimura, K.; Nagase, S.; Chen, Z. Dichlorocarbene addition to C60 from the trichloromethyl anion: Carbene mechanism or Bingel mechanism? J. Phys. Chem. A 2009, 113, 3673–3676.CrossRefGoogle Scholar
  38. [38]
    Zhang, P.; Pan, H.; Liu, D.; Guo, Z. -X.; Zhang, F.; Zhu, D. Effective mechanochemical synthesis of [60]fullerols. Synth. Commun. 2003, 33, 2469–2474.CrossRefGoogle Scholar
  39. [39]
    Li, T.; Li, X.; Huang, K.; Jiang, H.; Li, J. Synthesis and characterization of hydroxylated fullerene epoxide—An intermediate for forming fullerol. J. Cent. South. Univ. Technol. 1999, 6, 35–36.CrossRefGoogle Scholar
  40. [40]
    Wang, F. F.; Li, N.; Tian, D.; Xia, G. F.; Xiao, N. Efficient synthesis of fullerenol in anion form for the preparation of electrodeposited films. ACS Nano 2010, 4, 5565–5572.CrossRefGoogle Scholar
  41. [41]
    Tajima, Y.; Takeuchi, K. Discovery of C60O3 isomer having C 3v symmetry. J. Org. Chem. 2002, 67, 1696–1698.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Ken Kokubo
    • 1
  • Shogo Shirakawa
    • 1
  • Naoki Kobayashi
    • 1
  • Hisae Aoshima
    • 2
  • Takumi Oshima
    • 1
  1. 1.Division of Applied Chemistry, Graduate School of EngineeringOsaka UniversitySuita, OsakaJapan
  2. 2.Vitamin C60 BioResearch CorporationTokyoJapan

Personalised recommendations