Nano Research

, Volume 4, Issue 1, pp 124–130 | Cite as

Preparation, characterization, and electrocatalytic performance of graphene-methylene blue thin films

  • Dan Wang
  • Yanguang Li
  • Panitat Hasin
  • Yiying WuEmail author
Research Article


We report a general method to graft aromatic molecules onto graphene thin film electrodes through a simple immersion process. Large-area electroactive graphene thin films grafted with methylene blue (MB) have been developed as electrocatalytic electrodes for the oxidation of β-nicotinamide adenine dinucleotide (NADH). The oxidation of NADH starts from −0.08 V (vs. Ag/AgCl) at the graphene-MB thin film electrodes, showing a decrease of 530 mV in overpotential compared to a Ti metal electrode. The graphene-MB thin films have promising applications in biosensors and biofuel cells due to their ability to promote NADH electron transfer reaction.


Graphene electrocatalysis methylene blue β-nicotinamide adenine dinucleotide (NADH) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2010_69_MOESM1_ESM.pdf (299 kb)
Supplementary material, approximately 340 KB.


  1. [1]
    Geim, A. K. Graphene: Status and prospects. Science 2009, 324, 1530–1534.CrossRefGoogle Scholar
  2. [2]
    Allen, M. J.; Tung, V. C.; Kaner, R. B. Honeycomb carbon: A review of graphene. Chem. Rev. 2010, 110, 132–145.CrossRefGoogle Scholar
  3. [3]
    Park, S.; Ruoff, R. S. Chemical methods for the production of graphenes. Nat. Nanotechnol. 2009, 4, 217–224.CrossRefGoogle Scholar
  4. [4]
    Rao, C. N. R.; Biswas, K.; Subrahmanyam, K. S.; Govindaraj, A. Graphene, the new nanocarbon. J. Mater. Chem. 2009, 19, 2457–2469.CrossRefGoogle Scholar
  5. [5]
    Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Graphene-based composite materials. Nature 2006, 442, 282–286.CrossRefGoogle Scholar
  6. [6]
    Westervelt, R. M. Applied physics: Graphene nanoelectronics. Science 2008, 320, 324–325.CrossRefGoogle Scholar
  7. [7]
    Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.CrossRefGoogle Scholar
  8. [8]
    Eda, G.; Fanchini, G.; Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 2008, 3, 270–274.CrossRefGoogle Scholar
  9. [9]
    Stoller, M. D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R. S. Graphene-based ultracapacitors. Nano Lett. 2008, 8, 3498–3502.CrossRefGoogle Scholar
  10. [10]
    Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. -H.; Kim, P.; Choi, J. -Y.; Hong, B. H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706–710.CrossRefGoogle Scholar
  11. [11]
    Cai, W.; Zhu, Y.; Li, X.; Piner, R. D.; Ruoff, R. S. Large area few-layer graphene/graphite films as transparent thin conducting electrodes. Appl. Phys. Lett. 2009, 95, 123115.CrossRefGoogle Scholar
  12. [12]
    Becerril, H. A.; Mao, J.; Liu, Z.; Stoltenberg, R. M.; Bao, Z.; Chen, Y. Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2008, 2, 463–470.CrossRefGoogle Scholar
  13. [13]
    Wang, X.; Zhi, L.; Muellen, K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 2008, 8, 323–327.CrossRefGoogle Scholar
  14. [14]
    Eda, G.; Lin, Y. -Y.; Miller, S.; Chen, C. -W.; Su, W. -F.; Chhowalla, M. Transparent and conducting electrodes for organic electronics from reduced graphene oxide. Appl. Phys. Lett. 2008, 92, 233305.CrossRefGoogle Scholar
  15. [15]
    Wu, J.; Becerril, H. A.; Bao, Z.; Liu, Z.; Chen, Y.; Peumans, P. Organic solar cells with solution-processed graphene transparent electrodes. Appl. Phys. Lett. 2008, 92, 263302.CrossRefGoogle Scholar
  16. [16]
    Stankovich, S.; Piner, R. D.; Chen, X.; Wu, N.; Nguyen, S. T.; Ruoff, R. S. Stable aqueous dispersions of graphitic nano-platelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J. Mater. Chem. 2006, 16, 155–158.CrossRefGoogle Scholar
  17. [17]
    Liu, H.; Gao, J.; Xue, M.; Zhu, N.; Zhang, M.; Cao, T. Processing of graphene for electrochemical application: Noncovalently functionalize graphene sheets with water-soluble electroactive methylene green. Langmuir 2009, 25, 12006–12010.CrossRefGoogle Scholar
  18. [18]
    Su, Q.; Pang, S.; Alijani, V.; Li, C.; Feng, X.; Muellen, K. Composites of graphene with large aromatic molecules. Adv. Mater. 2009, 21, 3191–3195.CrossRefGoogle Scholar
  19. [19]
    Xu, Y.; Bai, H.; Lu, G.; Li, C.; Shi, G. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J. Am. Chem. Soc. 2008, 130, 5856–5857.CrossRefGoogle Scholar
  20. [20]
    Li, D.; Mueller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 2008, 3, 101–105.CrossRefGoogle Scholar
  21. [21]
    Heller, A.; Feldman, B. Electrochemical glucose sensors and their applications in diabetes management. Chem. Rev. 2008, 108, 2482–2505.CrossRefGoogle Scholar
  22. [22]
    Khoo, S. B.; Chen, F. Studies of sol-gel ceramic film incorporating methylene blue on glassy carbon: An electrocatalytic system for the simultaneous determination of ascorbic and uric acids. Anal. Chem. 2002, 74, 5734–5741.CrossRefGoogle Scholar
  23. [23]
    Yan, Y.; Zheng, W.; Su, L.; Mao, L. Carbon-nanotube-based glucose/O2 biofuel cells. Adv. Mater. 2006, 18, 2639–2643.CrossRefGoogle Scholar
  24. [24]
    Somani, P. R.; Radhakrishnan, S. Solid state electrochemical reaction in photocells made using conducting polyaniline and sensitized with methylene blue. J. Solid State Electrochem. 2003, 7, 166–170.Google Scholar
  25. [25]
    Gangotri, K. M.; Meena, R. C. Use of reductant and photosensitizer in photogalvanic cells for solar energy conversion and storage: Oxalic acid-methylene blue system. J. Photochem. Photobiol. A 2001, 141, 175–177.CrossRefGoogle Scholar
  26. [26]
    Yan, Y.; Zhang, M.; Gong, K.; Su, L.; Guo, Z.; Mao, L. Adsorption of methylene blue dye onto carbon nanotubes: A route to an electrochemically functional nanostructure and its layer-by-layer assembled nanocomposite. Chem. Mater. 2005, 17, 3457–3463.CrossRefGoogle Scholar
  27. [27]
    Barton, S. C.; Gallaway, J.; Atanassov, P. Enzymatic biofuel cells for implantable and microscale devices. Chem. Rev. 2004, 104, 4867–4886.CrossRefGoogle Scholar
  28. [28]
    Gorton, L.; Dominguez, E. Electrocatalytic oxidation of NAD(P)H at mediator-modified electrodes. Rev. Mol. Biotechnol. 2002, 82, 371–392.CrossRefGoogle Scholar
  29. [29]
    Zhang, M.; Gorski, W. Electrochemical sensing based on redox mediation at carbon nanotubes. Anal. Chem. 2005, 77, 3960–3965.CrossRefGoogle Scholar
  30. [30]
    Wang, J. Carbon-nanotube based electrochemical biosensors: A review. Electroanalysis 2005, 17, 7–14.CrossRefGoogle Scholar
  31. [31]
    Prieto-Simon, B.; Fabregas, E. Comparative study of electron mediators used in the electrochemical oxidation of NADH. Biosens. Bioelectron. 2004, 19, 1131–1138.CrossRefGoogle Scholar
  32. [32]
    Zhang, M.; Gorski, W. Electrochemical sensing platform based on the carbon nanotubes/redox mediators-biopolymer system. J. Am. Chem. Soc. 2005, 127, 2058–2059.CrossRefGoogle Scholar
  33. [33]
    Musameh, M.; Wang, J.; Merkoci, J.; Lin, Y. Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes. Electrochem. Commun. 2002, 4, 743–746.CrossRefGoogle Scholar
  34. [34]
    Wooten, M.; Gorski, W. Facilitation of NADH electro-oxidation at treated carbon nanotubes. Anal. Chem. 2010, 82, 1299–1304.CrossRefGoogle Scholar
  35. [35]
    Zhou, M.; Zhai, Y.; Dong, S. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Anal. Chem. 2009, 81, 5603–5613.CrossRefGoogle Scholar
  36. [36]
    Hummers, W. S.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339.CrossRefGoogle Scholar
  37. [37]
    Hirata, M.; Gotou, T.; Horiuchi, S.; Fujiwara, M.; Ohba, M. Thin-film particles of graphite oxide 1: High-yield synthesis and flexibility of the particles. Carbon 2004, 42, 2929–2937.Google Scholar
  38. [38]
    Wu, Z.; Chen, Z.; Du, X.; Logan, J. M.; Sippel, J.; Nikolou, M.; Kamaras, K.; Reynolds, J. R.; Tanner, D. B.; Hebard, A. F.; Rinzler, A. G. Transparent, conductive carbon nanotube films. Science 2004, 305, 1273–1276.CrossRefGoogle Scholar
  39. [39]
    Wang, D.; Rack, J. J.; Chen, L. Biocatalytic electrodes based on single-walled carbon nanotube network thin films. J. Nanosci. Nanotechnol. 2009, 9, 2310–2315.CrossRefGoogle Scholar
  40. [40]
    Paredes, J. I.; Villar-Rodil, S.; Solis-Fernandez, P.; Martinez-Alonso, A.; Tascon, J. M. D. Atomic force and scanning tunneling microscopy imaging of graphene nanosheets derived from graphite oxide. Langmuir 2009, 25, 5957–5968.CrossRefGoogle Scholar
  41. [41]
    Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558–1565.CrossRefGoogle Scholar
  42. [42]
    Guo, H. -L.; Wang, X. -F.; Qian, Q. -Y.; Wang, F. -B.; Xia, X. -H. A green approach to the synthesis of graphene nanosheets. ACS Nano 2009, 3, 2653–2659.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Dan Wang
    • 1
  • Yanguang Li
    • 1
  • Panitat Hasin
    • 1
  • Yiying Wu
    • 1
    Email author
  1. 1.Department of ChemistryThe Ohio State UniversityColumbusUSA

Personalised recommendations