Advertisement

Nano Research

, Volume 4, Issue 2, pp 180–193 | Cite as

Gold supported on metal oxides for carbon monoxide oxidation

  • Sonia A. C. Carabineiro
  • Nina Bogdanchikova
  • Miguel Avalos-Borja
  • Alexey Pestryakov
  • Pedro B. Tavares
  • Jose L. Figueiredo
Open Access
Research Article

Abstract

Au has been loaded (1% wt.) on different commercial oxide supports (CuO, La2O3, Y2O3, NiO) by three different methods: double impregnation (DIM), liquid-phase reductive deposition (LPRD), and ultrasonication (US). Samples were characterised by N2 adsorption at −196 °C, high-resolution transmission electron microscopy, selected area electron diffraction, energy dispersive X-ray spectrometry, high-angle annular dark-field imaging (Z-contrast), X-ray diffraction, and temperature programmed reduction. CO oxidation was used as a test reaction to compare the catalytic activities. The best results were obtained with Au loaded by DIM on the NiO support, with an activity of 7.2 × 10−4 molCO·gAu −1·s−1 at room temperature. This is most likely related to the Au nanoparticle size being the smallest in this catalyst (average 4.8 nm), since it is well known that gold particle size determines the catalytic activity. Other samples, having larger Au particle sizes (in the 2–12 nm range, with average sizes ranging from 4.8 to 6.8 nm), showed lower activities. Nevertheless, all samples prepared by DIM had activities (from 1.1 × 10−4 to 7.2 × 10−4 molCO·gAu −1·s−1, at room temperature) above those reported in the literature for gold on similar oxide supports. Therefore, this method gives better results than the most usual methods of deposition-precipitation or co-precipitation.

Keywords

Gold heterogeneous catalysis oxidation electron diffraction X-ray diffraction 

Supplementary material

12274_2010_68_MOESM1_ESM.pdf (840 kb)
Supplementary material, approximately 840 KB.

References

  1. [1]
    Haruta, M. Size- and support-dependency in the catalysis of gold. Catal. Today 1997, 36, 153–166.CrossRefGoogle Scholar
  2. [2]
    Haruta, M.; Date, M. Advances in the catalysis of Au nanoparticles. Appl. Catal. A: Gen. 2001, 222, 427–437.CrossRefGoogle Scholar
  3. [3]
    Haruta, M. Catalysis of gold nanoparticles deposited on metal oxides. Cattech 2002, 6, 102–115.CrossRefGoogle Scholar
  4. [4]
    Haruta, A. When gold is not noble: Catalysis by nanoparticles. Chem. Rec. 2003, 3, 75–87.CrossRefGoogle Scholar
  5. [5]
    Haruta, M. Gold as a novel catalyst in the 21st century: Preparation, working mechanism, and applications. Gold. Bull. 2004, 37, 27–36.Google Scholar
  6. [6]
    Bond, G. C.; Thompson, D. T. Gold-catalysed oxidation of carbon monoxide. Gold. Bull. 2000, 33, 41–51.Google Scholar
  7. [7]
    Bond, G. C.; Louis, C.; Thompson, D. T. Catalysis by Gold; Imperial College Press: London, United Kingdom, 2006.CrossRefGoogle Scholar
  8. [8]
    Carabineiro, S. A. C.; Thompson, D. T. Catalytic Applications for Gold Nanotechnology. In Nanocatalysis. Springer-Verlag: Berlin, Heidelberg, New York, 2007.Google Scholar
  9. [9]
    Carabineiro, S. A. C.; Thompson, D. T. Gold Catalysis. In Gold: Science and Applications. CRC Press, Taylor and Francis Group: Boca Raton, London, New York, 2010.Google Scholar
  10. [10]
    Hutchings, G. J.; Haruta, M. A golden age of catalysis: A perspective. Appl. Catal. A: Gen. 2005, 291, 2–5.CrossRefGoogle Scholar
  11. [11]
    Date, M.; Imai, H.; Tsubota, S.; Haruta, M. In situ measurements under flow condition of the CO oxidation over supported gold nanoparticles. Catal. Today 2007, 122, 222–225.CrossRefGoogle Scholar
  12. [12]
    Haruta, M.; Kobayashi, T.; Sano, H.; Yamada, N. Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0-degrees-C. Chem. Lett. 1987, 405–408.Google Scholar
  13. [13]
    Haruta, M.; Yamada, N.; Kobayashi, T.; Iijima, S. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. J. Catal. 1989, 115, 301–309.CrossRefGoogle Scholar
  14. [14]
    Hashmi, A. S. K.; Hutchings, G. J. Gold catalysis. Angew. Chem. Int. Ed. 2006, 45, 7896–7936.CrossRefGoogle Scholar
  15. [15]
    Aguilar-Guerrero, V.; Gates, B. C. Kinetics of CO oxidation catalyzed by supported gold: A tabular summary of the literature. Catal. Lett. 2009, 130, 108–120.CrossRefGoogle Scholar
  16. [16]
    Iizuka, Y.; Fujiki, H.; Yamauchi, N.; Chijiiwa, T.; Arai, S.; Tsubota, S.; Haruta, M. Adsorption of CO on gold supported on TiO2. Catal. Today 1997, 36, 115–123.CrossRefGoogle Scholar
  17. [17]
    Iizuka, Y.; Tode, T.; Takao, T.; Yatsu, K. I.; Takeuchi, T.; Tsubota, S.; Haruta, M. A kinetic and adsorption study of CO oxidation over unsupported fine gold powder and over gold supported on titanium dioxide. J. Catal. 1999, 187, 50–58.CrossRefGoogle Scholar
  18. [18]
    Park, E. D.; Lee, J. S. Effects of pretreatment conditions on CO oxidation over supported Au catalysts. J. Catal. 1999, 186, 1–11.CrossRefGoogle Scholar
  19. [19]
    Schubert, M. M.; Hackenberg, S.; van Veen, A. C.; Muhler, M.; Plzak, V.; Behm, R. J. CO oxidation over supported gold catalysts-“inert“ and “active“ support materials and their role for the oxygen supply during reaction. J. Catal. 2001, 197, 113–122.CrossRefGoogle Scholar
  20. [20]
    Kung, H. H.; Kung, M. C.; Costello, C. K. Supported Au catalysts for low temperature CO oxidation. J. Catal. 2003, 216, 425–432.CrossRefGoogle Scholar
  21. [21]
    Zhong, Z. Y.; Lin, J. Y.; Teh, S. P.; Teo, J.; Dautzenberg, F. M. A rapid and efficient method to deposit gold particles on catalyst supports and its application for CO oxidation at low temperatures. Adv. Funct. Mater. 2007, 17, 1402–1408.CrossRefGoogle Scholar
  22. [22]
    Perkas, N.; Zhong, Z.; Grinblat, J.; Gedanken, A. Deposition of gold particles on mesoporous catalyst supports by sonochemical method, and their catalytic performance for CO oxidation. Catal. Lett. 2008, 120, 19–24.CrossRefGoogle Scholar
  23. [23]
    Zhu, Y. H.; Li, W.; Zhou, Y. X.; Lu, X. H.; Feng, X.; Yang, Z. H. Low-temperature CO oxidation of gold catalysts loaded on mesoporous TiO2 whisker derived from potassium dititanate. Catal. Lett., 2009, 127, 406–410.CrossRefGoogle Scholar
  24. [24]
    Tanielyan, S. K.; Augustine, R. L. Effect of catalyst pretreatment on the oxidation of carbon-monoxide over coprecipitated gold catalysts. Appl. Catal. A: Gen. 1992, 85, 73–87.CrossRefGoogle Scholar
  25. [25]
    Hutchings, G. J.; Siddiqui, M. R. H.; Burrows, A.; Kiely, C. J.; Whyman, R. High-activity Au/CuO-ZnO catalysts for the oxidation of carbon monoxide at ambient temperature. J. Chem Soc., Faraday Trans. 1997, 93, 187–188.CrossRefGoogle Scholar
  26. [26]
    Solsona, B. E.; Garcia, T.; Jones, C.; Taylor, S. H.; Carley, A. F.; Hutchings, G. J. Supported gold catalysts for the total oxidation of alkanes and carbon monoxide. Appl. Catal. A: Gen. 2006, 312, 67–76.CrossRefGoogle Scholar
  27. [27]
    Ando, M.; Kobayashi, T.; Haruta, M. Combined effects of small gold particles on the optical gas sensing by transition metal oxide films. Catal. Today 1997, 36, 135–141.CrossRefGoogle Scholar
  28. [28]
    Avgouropoulos, G.; Papavasiliou, J.; Tabakova, T.; Idakiev, V.; Ioannides, T. A comparative study of ceria-supported gold and copper oxide catalysts for preferential CO oxidation reaction. Chem. Eng. J. 2006, 124, 41–45.CrossRefGoogle Scholar
  29. [29]
    Pillai, U. R.; Deevi, S. Room temperature oxidation of carbon monoxide over copper oxide catalyst. Appl. Catal. B: Environ. 2006, 64, 146–151.CrossRefGoogle Scholar
  30. [30]
    Haruta, M.; Yamada, N.; Kobayashi, T.; Iijima, S. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and carbon-monoxide. J. Catal. 1989, 115, 301–309.CrossRefGoogle Scholar
  31. [31]
    Zhou, S. H.; Yin, H. F.; Schwartz, V.; Wu, Z. L.; Mullins, D.; Eichhorn, B.; Overbury, S. H.; Dai, S. In situ phase separation of NiAu alloy nanoparticles for preparing highly active Au/NiO CO oxidation catalysts. ChemPhysChem 2008, 9, 2475–2479.CrossRefGoogle Scholar
  32. [32]
    Radwan, N. R. E.; Ei-Shall, M. S.; Hassan, H. M. A. Synthesis and characterization of nanoparticle CO3O4, CuO, and NiO catalysts prepared by physical and chemical methods to minimize air pollution. Appl. Catal. A: Gen. 2007, 331, 8–18.CrossRefGoogle Scholar
  33. [33]
    Zhang, W. X.; Tao, Y. G.; Jia, M. J.; Wu, T. H.; Li, X. M. Catalytic oxidation of CO at ambient temperature and humidity on Au/NiO prepared by using different methods. Chem. J. Chin. Univ. 1998, 19, 1317–1319.Google Scholar
  34. [34]
    Wang, G. Y.; Zhang, W. X.; Jiang, D. Z.; Wu, T. H. CO oxidation over Au/MeOx at ambient temperature and humidity. Acta Chim. Sinica 2000, 58, 1557–1562.Google Scholar
  35. [35]
    Wang, G. Y.; Zhang, W. X.; Cui, Y. C.; Lian, H. L.; Jiang, D. Z.; Wu, T. H. Effect of H2O on catalytic performance of MOx, and Au/MOx catalysts for CO oxidation. Chin. J. Catal. 2001, 22, 408–410.Google Scholar
  36. [36]
    Wang, D. S.; Xu, R.; Wang, X.; Li, Y. D. NiO nanorings and their unexpected catalytic property for CO oxidation. Nanotechnol. 2006, 17, 979–983.CrossRefGoogle Scholar
  37. [37]
    Guzman, J.; Corma, A. Nanocrystalline and mesostructured Y2O3 as supports for gold catalysts. Chem. Commun. 2005, 743–745.Google Scholar
  38. [38]
    Guzman, J.; Carrettin, S.; Fierro-Gonzalez, J. C.; Hao, Y. L.; Gates, B. C.; Corma, A. CO oxidation catalyzed by supported gold: Cooperation between gold and nanocrystalline rare-earth supports forms reactive surface superoxide and peroxide species. Angew. Chem. Int. Ed. 2005, 44, 4778–4781.CrossRefGoogle Scholar
  39. [39]
    Russo, N.; Fino, D.; Saracco, G.; Specchia, V. Supported gold catalysts for CO oxidation. Catal. Today 2006, 117, 214–219.CrossRefGoogle Scholar
  40. [40]
    Fierro-Gonzalez, J. C.; Bhirud, V. A.; Gates, B. C. A highly active catalyst for CO oxidation at 298 K: Mononuclear Au-III complexes anchored to La2O3 nanoparticles. Chem. Commun. 2005, 5275–5277.Google Scholar
  41. [41]
    Mihaylov, M.; Ivanova, E.; Hao, Y.; Hadjiivanov, K.; Knozinger, H.; Gates, B. C. Gold supported on La2O3: Structure and reactivity with CO2 and implications for CO oxidation catalysis. J. Phys. Chem. C 2008, 112, 18973–18983.Google Scholar
  42. [42]
    Mihaylov, M.; Ivanova, E.; Hao, Y.; Hadjiivanov, K.; Gates, B. C.; Knozinger, H. Oxidation by CO2 of Au-0 species on La2O3-supported gold clusters. Chem. Commun. 2008, 175–177.Google Scholar
  43. [43]
    Grisel, R. J. H.; Nieuwenhuys, B. E. Selective oxidation of CO over supported Au catalysts. J. Catal. 2001, 199, 48–59.CrossRefGoogle Scholar
  44. [44]
    Gasior, M.; Grzybowska, B.; Samson, K.; Ruszel, A.; Haber, J. Oxidation of CO and C3 hydrocarbons on gold dispersed on oxide supports. Catal. Today 2003, 91–92, 131–135.Google Scholar
  45. [45]
    Szabo, E. G.; Hegedus, M.; Szegedi, A.; Sajo, I.; Margitfalvi, J. L. CO oxidation over Au/Al2O3 catalysts modified by MgO. React. Kinet. Catal. Lett. 2005, 86, 339–345.CrossRefGoogle Scholar
  46. [46]
    Bowker, M.; Nuhu, A.; Soares, J. High activity supported gold catalysts by incipient wetness impregnation. Catal. Today 2007, 122, 245–247.CrossRefGoogle Scholar
  47. [47]
    Sunagawa, Y.; Yamamoto, K.; Takahashi, H.; Muramatsu, A. Liquid-phase reductive deposition as a novel nanoparticle synthesis method and its application to supported noble metal catalyst preparation. Catal. Today 2008, 132, 81–87.CrossRefGoogle Scholar
  48. [48]
    Carabineiro, S. A. C.; Silva, A. M. T.; Dražić, G.; Tavares, P. B.; Figueiredo, J. L. Gold nanoparticles on ceria supports for the oxidation of carbon monoxide. Catal. Today 2010, 154, 21–30.CrossRefGoogle Scholar
  49. [49]
    Carabineiro, S. A. C.; Bastos, S. S. T.; Órfão, J. J. M.; Pereira, M. F. R.; Delgado, J. J.; Figueiredo, J. L. Exotemplated ceria catalysts with gold for CO oxidation. Appl. Catal. A: Gen. 2010, 381, 150–160.CrossRefGoogle Scholar
  50. [50]
    Carabineiro, S. A. C.; Machado, B. F.; Bacsa, R. R.; Serp, P.; Dražić, G.; Faria, J. L.; Figueiredo, J. L. Catalytic performance of Au/ZnO nanocatalysts for CO oxidation. J. Catal. 2010, 273, 191–198.CrossRefGoogle Scholar
  51. [51]
    Carabineiro, S. A. C.; Silva, A. M. T.; Dražić, G.; Tavares, P. B.; Figueiredo, J. L. Effect of chloride on the sinterization of Au/CeO2 catalysts. Catal. Today 2010, 154, 293–302.CrossRefGoogle Scholar
  52. [52]
    Santos, V. P.; Carabineiro, S. A. C.; Tavares, P. B.; Pereira, M. F. R.; Órfão, J. J. M.; Figueiredo, J. L. Oxidation of CO, ethanol, and toluene over TiO2 supported noble metal catalysts. Appl. Catal. B: Environ. 2010, 99, 198–205.CrossRefGoogle Scholar
  53. [53]
    Carabineiro, S. A. C.; Bastos, S. S. T.; Orfao, J. J. M.; Pereira, M. F. R.; Delgado, J. J.; Figueiredo, J. L. Carbon monoxide oxidation catalysed by exotemplated manganese oxides. Catal. Lett. 2010, 134, 217–227.CrossRefGoogle Scholar
  54. [54]
  55. [55]
  56. [56]
    Margitfalvi, J. L.; Fasi, A.; Hegedus, M.; Lonyi, F.; Gobolos, S.; Bogdanchikova, N. Au/MgO catalysts modified with ascorbic acid for low temperature CO oxidation. Catal. Today 2002, 72, 157–169.CrossRefGoogle Scholar
  57. [57]
    Guzman, J.; Gates, B. C. Catalysis by supported gold: Correlation between catalytic activity for CO oxidation and oxidation states of gold. J. Am Chem. Soc. 2004, 126, 2672–2673.CrossRefGoogle Scholar
  58. [58]
    Szabo, E. G.; Tompos, A.; Hegedus, M.; Szegedi, A.; Margitfalvi, J. L. The influence of cooling atmosphere after reduction on the catalytic properties of Au/Al2O3 and Au/MgO catalysts in CO oxidation. Appl. Catal. A: Gen. 2007, 320, 114–121.CrossRefGoogle Scholar
  59. [59]
    Choudhary, V. R.; Mulla, S. A. R.; Uphade, B. S. Oxidative coupling of methane over supported La2O3 and La-promoted MgO catalysts: Influence of catalyst-support interactions. Ind. Eng. Chem. Res. 1997, 36, 2096–2100.CrossRefGoogle Scholar
  60. [60]
    Ko, E. Y.; Park, E. D.; Seo, K. W.; Lee, H. C.; Lee, D.; Kim, S. A comparative study of catalysts for the preferential CO oxidation in excess hydrogen. Catal. Today 2006, 116, 377–383.CrossRefGoogle Scholar
  61. [61]
    Carabineiro, S. A. C.; Silva, A. M. T.; Dražić, G.; Figueiredo, J. L. Analytical electron microscopy of gold nanoparticles on ceria, titania, and ceria-titania materials. In Microscopy: Science, Technology, Applications and Education, Formatex Microscopy Book series. Formatex Research Center, 2010.Google Scholar
  62. [62]
    Sakurai, H.; Tsubota, S.; Haruta, M. Hydrogenation of CO over gold supported on metal oxides. Appl. Catal. A: Gen. 1993, 102, 125–136.CrossRefGoogle Scholar
  63. [63]
    Arena, F.; Frusteri, F.; Parmaliana, A.; Giordano, N. On the reduction of NiO forms in magnesia supported catalysts. React. Kinet. Catal. Lett. 1990, 42, 121–126.CrossRefGoogle Scholar
  64. [64]
    Parmaliana, A.; Arena, F.; Frusteri, F.; Giordano, N. Temperature-programmed reduction study of NiO-MgO interactions in magnesia-supported Ni catalysts and NiO-MgO physical mixture. J. Chem Soc., Faraday Trans. 1990, 86, 2663–2669.CrossRefGoogle Scholar
  65. [65]
    Kotsev, N. K.; Ilieva, L. I. Determination of nonstoichiometric oxygen in NiO by temperature-programmed reduction. Catal. Lett. 1993, 18, 173–176.CrossRefGoogle Scholar
  66. [66]
    Li, C. P.; Chen, Y. W. Temperature-programmed-reduction studies of nickel-oxide alumina catalysts—Effects of the preparation method. Thermochim. Acta 1995, 256, 457–465.CrossRefGoogle Scholar
  67. [67]
    Bellido, J. D. A.; Assaf, E. M. Effect of the Y2O3-ZrO2 support composition on nickel catalyst evaluated in dry reforming of methane. Appl. Catal. A: Gen. 2009, 352, 179–187.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Sonia A. C. Carabineiro
    • 1
  • Nina Bogdanchikova
    • 2
  • Miguel Avalos-Borja
    • 2
  • Alexey Pestryakov
    • 3
  • Pedro B. Tavares
    • 4
  • Jose L. Figueiredo
    • 1
  1. 1.Laboratório de Catálise e Materiais, Associate Laboratory LSRE/LCM, Departamento de Engenharia Química, Faculdade de EngenhariaUniversidade do PortoPortoPortugal
  2. 2.Centro de Nanociencias y NanotecnologíaUniversidad Nacional Autónoma de MéxicoEnsenada, Baja CaliforniaMéxico
  3. 3.Tomsk Polytechnic UniversityTomskRussia
  4. 4.Departamento de QuímicaUniversidade de Trás-os-Montes e Alto Douro, Centro de Química-Vila RealVila RealPortugal

Personalised recommendations