Nano Research

, Volume 3, Issue 11, pp 807–812 | Cite as

A mechanically tunable plasmonic structure composed of a monolayer array of metal-capped colloidal spheres on an elastomeric substrate

Open Access
Research Article


A highly stretchable plasmonic structure composed of a monolayer array of metal-capped colloidal spheres on an elastomeric substrate has been fabricated using simple and inexpensive self-assembly and transfer-printing techniques. This composite structure supports coupled surface plasmons whose wavelengths are sensitive to the arrangement of the metal-capped colloidal spheres. Upon stretching, the lattice of metal-capped colloidal spheres will be deformed, leading to a large wavelength shift of surface plasmon resonances and simultaneously an obvious color change. This stretchable plasmonic structure offers a promising approach to tune surface plasmon resonances and might be exploited in realizing flexible plasmonic devices with tunability of mechanical strain.


Plasmonic structure metal-capped colloidal spheres elastomeric substrate tunable surface plasmon resonance 


  1. [1]
    Barnes, W. L.; Dereux, A.; Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 2003, 424, 824–830.CrossRefADSPubMedGoogle Scholar
  2. [2]
    Zayats, A. V.; Smolyaninov, I. I.; Maradudin, A. A. Nanooptics of surface plasmon polaritons. Phys. Rep. 2005, 408, 131–314.CrossRefADSGoogle Scholar
  3. [3]
    Maier, S. A. Plasmonics: Fundamentals and Applications; Springer: New York, 2007.Google Scholar
  4. [4]
    Raether, H. Surface Plasmons; Springer: Berlin, 1988.Google Scholar
  5. [5]
    Dickson, W.; Wurtz, G. A.; Evans, P. R.; Pollard, R. J.; Zayats, A. V. Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal. Nano Lett. 2008, 8, 281–286.CrossRefADSPubMedGoogle Scholar
  6. [6]
    Xu, G.; Huang, C. M.; Tazawa, M.; Jin, P.; Chen, D. M. Nano-Ag on vanadium dioxide. II. Thermal tuning of surface plasmon resonance. J. Appl. Phys. 2008, 104, 053102.CrossRefADSGoogle Scholar
  7. [7]
    Chen, H. L.; Hsieh, K. C.; Lin, C. H.; Chen, S. H. Using direct nanoimprinting of ferroelectric films to prepare devices exhibiting bi-directionally tunable surface plasmon resonances. Nanotechnology 2008, 19, 435304.CrossRefADSGoogle Scholar
  8. [8]
    Rehwald, S.; Berndt, M.; Katzenberg, F.; Schwieger, S.; Runge, E.; Schierbaum, K.; Zerulla, D. Tunable nanowires: An additional degree of freedom in plasmonics. Phys. Rev. B 2007, 76, 085420.CrossRefADSGoogle Scholar
  9. [9]
    Chiang, Y. L.; Chen, C. W.; Wang, C. H.; Hsieh, C. Y.; Chen, Y. T.; Shih, H. Y.; Chen, Y. F. Mechanically tunable surface plasmon resonance based on gold nanoparticles and elastic membrane polydimethylsiloxane composite. Appl. Phys. Lett. 2010, 96, 041904.CrossRefADSGoogle Scholar
  10. [10]
    Olcum, S.; Kocabas, A.; Ertas, G.; Atalar, A.; Aydinli, A. Tunable surface plasmon resonance on an elastomeric substrate. Opt. Express 2009, 17, 8542–8547.CrossRefADSPubMedGoogle Scholar
  11. [11]
    Cole, R. M.; Mahajan, S.; Baumberg, J. J. Stretchable metal-elastomer nanovoids for tunable plasmons. Appl. Phys. Lett. 2009, 95, 154103.CrossRefADSGoogle Scholar
  12. [12]
    Packard, C. E.; Murarka, A.; Lam, E. W.; Schmidt, M. A.; Bulović, V. Contact-printed microelectromechanical systems. Adv. Mater. 2010, 22, 1840–1844.CrossRefPubMedGoogle Scholar
  13. [13]
    Gates, B.; Qin, D.; Xia, Y. N. Assembly of nanoparticles into opaline structures over large areas. Adv. Mater. 1999, 11, 466–469.CrossRefGoogle Scholar
  14. [14]
    Shi, L.; Liu, X. H.; Yin, H. W.; Zi, J. Optical response of a flat metallic surface coated with a monolayer array of latex spheres. Phys. Lett. A 2010, 374, 1059–1062.CrossRefADSGoogle Scholar
  15. [15]
    Yu, X. D.; Shi, L.; Han. D. Z.; Zi, J.; Braun, P. V. High quality factor metallodielectric hybrid plasmonic-photonic crystals. Adv. Funct. Mater. 2010, 20, 1910–1916.CrossRefGoogle Scholar
  16. [16]
    Zhou, Y. X.; Hu, L. B.; Grüner, G. A method of printing carbon nanotube thin films. Appl. Phys. Lett. 2006, 88, 123109.CrossRefADSGoogle Scholar
  17. [17]
    Love, J. C.; Gates, B. D.; Wolfe, D. B.; Paul, K. E.; Whitesides, G. M. Fabrication and wetting properties of metallic half-shells with submicron diameters. Nano Lett. 2002, 2, 891–894.CrossRefADSGoogle Scholar
  18. [18]
    Zhan, P.; Wang, Z. L.; Dong, H.; Sun, J.; Wu, J.; Wang, H. T.; Zhu, S. N.; Ming, N. B.; Zi, J. The anomalous infrared transmission of gold films on two-dimensional colloidal crystals. Adv. Mater. 2006, 18, 1612–1616.CrossRefGoogle Scholar
  19. [19]
    Li, Y. Y.; Pan, J.; Zhan, P.; Zhu, S. N.; Ming, N. B.; Wang, Z. L.; Han, W. D.; Jiang, X. Y.; Zi, J. Surface plasmon coupling enhanced dielectric environment sensitivity in a quasi-three-dimensional metallic nanohole array. Opt. Express 2010, 18, 3546–3555.CrossRefADSPubMedGoogle Scholar
  20. [20]
    Liu, Z.; Shi, L.; Shi, Z.; Liu, X. H.; Zi, J.; Zhou, S. M.; Wei, S. J.; Li, J.; Zhang, X.; Xia, Y. J. Magneto-optical Kerr effect in perpendicularly magnetized Co/Pt films on two-dimensional colloidal crystals. Appl. Phys. Lett. 2009, 95, 032502.CrossRefADSGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of Physics, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), and State Key Laboratory of Surface PhysicsFudan UniversityShanghaiChina
  2. 2.National Laboratory of Solid State MicrostructuresNanjing UniversityNanjingChina

Personalised recommendations