Nano Research

, Volume 3, Issue 11, pp 794–799

One-step, solvothermal synthesis of graphene-CdS and graphene-ZnS quantum dot nanocomposites and their interesting photovoltaic properties

  • Ping Wang
  • Tengfei Jiang
  • Chengzhou Zhu
  • Yueming Zhai
  • Dejun Wang
  • Shaojun Dong
Open Access
Research Article


The synthesis of graphene-semiconductor nanocomposites has attracted increasing attention due to their interesting optoelectronic properties. However the synthesis of such nanocomposites, with decorated particles well dispersed on graphene, is still a great challenge. This work reports a facile, one-step, solvothermal method for the synthesis of graphene-CdS and graphene-ZnS quantum dot nanocomposites directly from graphene oxide, with CdS and ZnS very well dispersed on the graphene nanosheets. Photoluminescence measurements showed that the integration of CdS and ZnS with graphene significantly decreases their photoluminescence. Transient photovoltage studies revealed that the graphene-CdS nanocomposite exhibits a very unexpected strong positive photovoltaic response, while separate samples of graphene and CdS quantum dots (QDs) of a similar size do not show any photovoltaic response.


Graphene CdS ZnS quantum dots charge transfer photovoltaic 

Supplementary material

12274_2010_46_MOESM1_ESM.pdf (1.1 mb)
Supplementary material, approximately 605 KB.


  1. [1]
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.CrossRefADSPubMedGoogle Scholar
  2. [2]
    Avouris, P.; Chen, Z.; Perebeinos, V. Carbon-based electronics. Nat. Nanotechnol. 2007, 2, 605–615.CrossRefADSPubMedGoogle Scholar
  3. [3]
    Freitag, M.; Steiner, M.; Martin, Y.; Perebeinos, V.; Chen, Z.; Tsang J. C.; Avouris, P. Energy dissipation in graphene field-effect transistors. Nano Lett. 2009, 9, 1883–1888.CrossRefADSPubMedGoogle Scholar
  4. [4]
    Ang, P. K.; Chen, W.; Wee A. T. S.; Loh, K. P. Solution-gated epitaxial graphene as pH sensor. J. Am. Chem. Soc. 2008, 130, 14392–14393.CrossRefPubMedGoogle Scholar
  5. [5]
    Zhou, M.; Zhai, Y. M.; Dong, S. J. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Anal. Chem. 2009, 81, 5603–5613.CrossRefPubMedGoogle Scholar
  6. [6]
    Stoller, M. D.; Park, S.; Zhu, Y.; An J.; Ruoff, R. S. Graphene-based ultracapacitors. Nano Lett. 2008, 8, 3498–3502.CrossRefADSPubMedGoogle Scholar
  7. [7]
    Stampfer, C.; Schurtenberger, E.; Molitor, F.; Guttinger, J.; Ihn, T.; Ensslin, K. Tunable graphene single electron transistor. Nano Lett. 2008, 8, 2378–2383.CrossRefADSPubMedGoogle Scholar
  8. [8]
    Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.CrossRefADSPubMedGoogle Scholar
  9. [9]
    Chae, H. K.; Siberio-Pérez, D. Y.; Kim, J.; Go, Y.; Eddaoudi, M.; Matzger, A. J.; O’Keeffe, M.; Yaghi, O. M. A route to high surface area, porosity and inclusion of large molecules in crystals. Nature 2004, 427, 523–527.CrossRefADSPubMedGoogle Scholar
  10. [10]
    Yong, V.; Tour, J. M. Theoretical efficiency of graphene-based photovoltaics. Small 2010, 6, 313–318.CrossRefPubMedGoogle Scholar
  11. [11]
    Guo, C. X.; Yang, H. B.; Sheng, Z. M.; Lu, Z. S.; Song, Q. L.; Li, C. M. Layered graphene/quantum dots for photovoltaic devices. Angew. Chem. Int. Ed. 2010, 49, 3014–3017.CrossRefGoogle Scholar
  12. [12]
    Robel, I.; Bunker, B. A.; Kamat, P. V. Single-walled carbon nanotube-CdS nanocomposites as light-harvesting assemblies: Photoinduced charge-transfer interactions. Adv. Mater. 2005, 17, 2458–2463.CrossRefGoogle Scholar
  13. [13]
    Gu, F.; Li, C.; Wang, S. Solution-chemical synthesis of carbon nanotube/ZnS nanoparticle core/shell heterostructures. Inorg. Chem. 2007, 46, 5343–5348.CrossRefPubMedGoogle Scholar
  14. [14]
    Li, F.; Song, J.; Yang, H.; Gan, S.; Zhang, Q.; Han, D.; Ivaska, A.; Niu, L. One-step synthesis of graphene/SnO2 nanocomposites and its application in electrochemical supercapacitors. Nanotechnology 2009, 20, 455602.CrossRefADSPubMedGoogle Scholar
  15. [15]
    Cao, A.; Liu, Z.; Chu, S.; Wu, M.; Ye, Z.; Cai, Z.; Chang, Y.; Wang, S.; Gong, Q.; Liu, Y. A facile one-step method to produce graphene-CdS quantum dot nanocomposites as promising optoelectronic materials. Adv. Mater. 2010, 22, 103–106.CrossRefPubMedGoogle Scholar
  16. [16]
    Paredes, J. I.; Villar-Rodil, S.; Martinez-Alonso, A.; Tascon, J. M. D. Graphene oxide dispersions in organic solvents. Langmuir 2008, 24, 10560–10564.CrossRefPubMedGoogle Scholar
  17. [17]
    Nethravathi, C.; Rajamathi, M. Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide. Carbon 2008, 46, 1994–1998.CrossRefGoogle Scholar
  18. [18]
    Williams, G.; Seger, B.; Kamat, P. V. TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2008, 2, 1487–1491.CrossRefPubMedGoogle Scholar
  19. [19]
    Yuge, R.; Zhang, M.; Tomonari, M.; Yoshitake, T.; Iijima, S.; Yudasaka, M. Site identification of carboxyl groups on graphene edges with Pt derivatives. ACS Nano 2008, 2, 1865–1870.CrossRefPubMedGoogle Scholar
  20. [20]
    Williams, G.; Kamat, P. V. Graphene-semiconductor nanocomposites: Excited-state interactions between ZnO nanoparticles and graphene oxide. Langmuir 2009, 25, 13869–13873.CrossRefPubMedGoogle Scholar
  21. [21]
    Duzhko, V.; Timoshenko, V. Y.; Koch, F.; Dittrich, T. Photovoltage in nanocrystalline porous TiO2. Phys. Rev. B 2001, 64, 075204.CrossRefADSGoogle Scholar
  22. [22]
    Fang, Q.; Zhu, G.; Jin, Z.; Xue, M.; Wei, X.; Wang, D.; Qiu, S. A multifunctional metal-organic open framework with a bcu topology constructed from undecanuclear clusters. Angew. Chem. Int. Ed. 2006, 45, 6126–6130.CrossRefGoogle Scholar
  23. [23]
    Wei, X.; Xie, T.; Xu, D.; Zhao, Q.; Pang, S.; Wang, D. A study of the dynamic properties of photo-induced charge carriers at nanoporous TiO2/conductive substrate interfaces by the transient photovoltage technique. Nanotechnology 2008, 19, 275707.CrossRefADSGoogle Scholar
  24. [24]
    Wang, P.; Xie, T.; Li, H.; Peng, L.; Zhang, Y.; Wu, T.; Pang, S.; Zhao, Y.; Wang, D. Synthesis and plasmon-induced charge-transfer properties of monodisperse gold-doped titania microspheres. Chem. Eur. J. 2009, 15, 4366–4372.CrossRefGoogle Scholar
  25. [25]
    Zhang, Q.; Wang, D.; Wei, X.; Xie, T.; Li, Z.; Lin, Y.; Yang, M. A study of the interface and the related electronic properties in n-Al0.35Ga0.65N/GaN heterostructure. Thin Solid Films 2005, 491, 242–248.CrossRefADSGoogle Scholar
  26. [26]
    Lin, Y.; Wang, D.; Zhao, Q.; Yang, M.; Zhang, Q. A study of quantum confinement properties of photogenerated charges in ZnO nanoparticles by surface photovoltage spectroscopy. J. Phys. Chem. B 2004, 108, 3202–3206.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Ping Wang
    • 1
  • Tengfei Jiang
    • 2
  • Chengzhou Zhu
    • 1
  • Yueming Zhai
    • 1
  • Dejun Wang
    • 2
  • Shaojun Dong
    • 1
  1. 1.State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunChina
  2. 2.College of ChemistryJilin UniversityChangchunChina

Personalised recommendations