Nano Research

, Volume 3, Issue 9, pp 676–684 | Cite as

Monodisperse nickel nanoparticles supported on SiO2 as an effective catalyst for the hydrolysis of ammonia-borane

Open Access
Research Article

Abstract

Monodisperse Ni nanoparticles (NPs) have been synthesized by the reduction of nickel(II) acetylacetonate with the borane-tributylamine complex in a mixture of oleylamine and oleic acid. These Ni NPs are an active catalyst for the hydrolysis of the ammonia-borane (AB, H3N·BH3) complex under ambient conditions and their activities are dependent on the chemical nature of the oxide support that they were deposited on. Among various oxides (SiO2, Al2O3, and CeO2) tested, SiO2 was found to enhance Ni NP catalytic activity due to the etching of the 3.2 nm Ni NPs giving Ni(II) ions and the subsequent reduction of Ni(II) that led to the formation of 1.6 nm Ni NPs on the SiO2 surface. The kinetics of the hydrolysis of AB catalyzed by Ni/SiO2 was shown to be dependent on catalyst and substrate concentration as well as temperature. The Ni/SiO2 catalyst has a turnover frequency (TOF) of 13.2 mol H2·(mol Ni)−1 · min−1—the best ever reported for the hydrolysis of AB using a nickel catalyst, an activation energy of 34 kJ/mol ± 2 kJ/mol and a total turnover number of 15,400 in the hydrolysis of AB. It is a promising candidate to replace noble metals for catalyzing AB hydrolysis and for hydrogen generation under ambient conditions.

Keywords

Nickel nanoparticles supported catalyst hydrogen storage hydrolysis of ammonia-borane 

Supplementary material

12274_2010_31_MOESM1_ESM.pdf (489 kb)
Supplementary material, approximately 340 KB.

References

  1. [1]
    Schlapbach, L.; Züttel, A. Hydrogen storage materials for mobile applications. Nature 2001, 414, 353–358.CrossRefADSPubMedGoogle Scholar
  2. [2]
    Orimo, S.; Nakamori, Y.; Eliseo, J. R.; Züttel, A.; Jensen, C. M. Complex hydrides for hydrogen storage. Chem. Rev. 2007, 107, 4111–4132.CrossRefPubMedGoogle Scholar
  3. [3]
    Marder, T. B. Will we soon be fueling our automobiles with ammonia-borane? Angew. Chem. Int. Ed. 2007, 46, 8116–8118.CrossRefGoogle Scholar
  4. [4]
    Chen, Y. S.; Fulton, J. L.; Linehan, Y. C.; Autrey, T. In situ XAFS and NMR study of rhodium-catalyzed dehydrogenation of dimethylamine borane. J. Am. Chem. Soc. 2005, 127, 3254–3255.CrossRefPubMedGoogle Scholar
  5. [5]
    Gutowska, A.; Li, L. Y.; Shin, Y. S.; Wang, C. M.; Li, X. H. S.; Linehan, J. C.; Smith, R. S.; Kay, B. D.; Schmid, B.; Shaw, W.; Gutowski, M.; Autrey, T. Nanoscaffold mediates hydrogen release and the reactivity of ammonia borane. Angew. Chem. Int. Ed. 2005, 44, 3578–3582.CrossRefGoogle Scholar
  6. [6]
    Stephens, F. H.; Pons, V.; Baker, R. T. Ammonia-borane: The hydrogen source par excellence? Dalton Trans. 2007, 2613–2626, and references therein.Google Scholar
  7. [7]
    Chandra, M.; Xu, Q. A high-performance hydrogen generation system: Transition metal-catalyzed dissociation and hydrolysis of ammonia-borane. J. Power Sources 2006, 156, 190–194.CrossRefGoogle Scholar
  8. [8]
    Chandra, M.; Xu, Q. Dissociation and hydrolysis of ammonia-borane with solid acids and carbon dioxide: An efficient hydrogen generation system. J. Power Sources 2006, 159, 855–860.CrossRefGoogle Scholar
  9. [9]
    Xu, Q.; Chandra, M. Catalytic activities of non-noble metals for hydrogen generation from aqueous ammonia-borane at room temperature. J. Power Sources 2006, 163, 364–370.CrossRefGoogle Scholar
  10. [10]
    Kalidindi, S. B.; Sayal, U.; Jagirdar, B. R. Nanostructured Cu and Cu@Cu2O core shell catalysts for hydrogen generation from ammonia-borane. Phys. Chem. Chem. Phys. 2008, 10, 5870–5874.CrossRefPubMedGoogle Scholar
  11. [11]
    Basu, S.; Brockman, A.; Gagore, P.; Zheng, Y.; Ramachandran, P. V.; Delgass, W. N.; Gore, J. P. Chemical kinetics of Rucatalyzed ammonia-borane hydrolysis. J. Power Sources 2009, 188, 238–243.CrossRefGoogle Scholar
  12. [12]
    Yan, J. -M.; Zhang, X. -B.; Han, S.; Shioyama, H.; Xu, Q. Magnetically recyclable Fe-Ni alloy catalyzed dehydrogenation of ammonia borane in aqueous solution under ambient atmosphere. J. Power Sources 2009, 194, 478–481.CrossRefGoogle Scholar
  13. [13]
    Yan, J. -M.; Zhang, X. -B.; Han, S.; Shioyama, H.; Xu, Q. Room temperature hydrolytic dehydrogenation of ammonia borane catalyzed by Co nanoparticles. J. Power Sources 2010, 195, 1091–1094.CrossRefGoogle Scholar
  14. [14]
    Cheng, F.; Ma, H.; Li, Y.; Chen, J. Ni1−xPtx (x = 0−0.12) hollow spheres as catalysts for hydrogen generation from ammonia borane. Inorg. Chem. 2007, 46, 788–794.CrossRefPubMedGoogle Scholar
  15. [15]
    Clark, T. J.; Whittell, G. R.; Manners, I. Highly efficient colloidal cobalt- and rhodium-catalyzed hydrolysis of H3N·BH3 in air. Inorg. Chem. 2007, 46, 7522–7527.CrossRefPubMedGoogle Scholar
  16. [16]
    Zahmakıran, M.; Özkar, S. Zeolite framework stabilized rhodium(0) nanoclusters catalyst for the hydrolysis of ammonia-borane in air: Outstanding catalytic activity, reusability and lifetime. Appl. Catal. B: Env. 2009, 89, 104–110.CrossRefGoogle Scholar
  17. [17]
    Chandra, M.; Xu, Q. Room temperature hydrogen generation from aqueous ammonia-borane using noble metal nanoclusters as highly active catalysts. J. Power Sources 2007, 168, 135–142.CrossRefGoogle Scholar
  18. [18]
    Durap, F.; Zahmakıran, M.; Özkar, S. Water soluble lauratestabilized ruthenium(0) nanoclusters catalyst for hydrogen generation from the hydrolysis of ammonia-borane: High activity and long lifetime. Int. J. Hydrogen Energy 2009, 34, 7223–7230.CrossRefGoogle Scholar
  19. [19]
    Yan, J. -M.; Zhang, X. -B.; Han, S.; Shioyama, H.; Xu, Q. Synthesis of longtime water/air-stable Ni nanoparticles and their high catalytic activity for hydrolysis of ammonia-borane for hydrogen generation. Inorg. Chem. 2009, 48, 7389–7393.CrossRefPubMedGoogle Scholar
  20. [20]
    Umegaki, T.; Yan, J. -M.; Zhang, X. -B.; Shioyama, H.; Kuriyama, N.; Xu, Q. Preparation and catalysis of poly(N-vinyl-2-pyrrolidone) (PVP) stabilized nickel catalyst for hydrolytic dehydrogenation of ammonia-borane. Int. J. Hydrogen Energy 2009, 34, 3816–3822.CrossRefGoogle Scholar
  21. [21]
    Jiang, H. -L.; Umegaki, T.; Akita, T.; Zhang, X. -B.; Haruta, M.; Xu, Q. Bimetallic Au-Ni nanoparticles embedded in SiO2 nanospheres: Synergetic catalysis in hydrolytic dehydrogenation of ammonia borane. Chem. Eur. J. 2010, 16, 3132–3137.CrossRefGoogle Scholar
  22. [22]
    Metin, Ö.; Mazumder, V.; Özkar, S.; Sun, S. Monodisperse nickel nanoparticles and their catalysis in hydrolytic dehydrogenation of ammonia borane. J. Am. Chem. Soc. 2010, 132, 1468–1469.CrossRefPubMedGoogle Scholar
  23. [23]
    Ramachadran, P. V.; Gagare, P. D. Preparation of ammonia borane in high yield and purity, methanolysis, and regeneration. Inorg. Chem. 2007, 46, 7810–7817.CrossRefGoogle Scholar
  24. [24]
    Shevchenko, E. V.; Talapin, D. V.; Murray, C. B.; O’Brien, S. Structural characterization of self-assembled multifunctional binary nanoparticle superlattices. J. Am. Chem. Soc. 2006, 128, 3620–3637.CrossRefPubMedGoogle Scholar
  25. [25]
    Kim, J.; Rong, C.; Liu, J. P.; Sun, S. Dispersible ferromagnetic FePt nanoparticles. Adv. Mater. 2009, 21, 906–909.CrossRefGoogle Scholar
  26. [26]
    Metin, Ö.; Sahin, S.; Özkar, S. Water-soluble poly(4-styrenesulfonic acid-co-maleic acid)-stabilized ruthenium(0) and palladium(0) nanoclusters as highly active catalysts in hydrogen generation from the hydrolysis of ammonia-borane. Int. J. Hydrogen Energy 2009, 34, 6304–6313.CrossRefGoogle Scholar
  27. [27]
    Metin, Ö.; Özkar, S. Hydrogen generation from the hydrolysis of ammonia-borane and sodium borohydride using watersoluble polymer-stabilized cobalt(0) nanoclusters catalyst. Energy Fuels 2009, 23, 3517–3526.CrossRefGoogle Scholar
  28. [28]
    Rakap, M.; Ozkar, S. Hydrogen generation from the hydrolysis of ammonia-borane using intrazeolite cobalt(0) nanoclusters catalyst. Int. J. Hydrogen Energy 2010, 35, 3341–3346.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of ChemistryMiddle East Technical UniversityAnkaraTurkey
  2. 2.Department of ChemistryBrown UniversityProvidenceUSA

Personalised recommendations