Advertisement

Nano Research

, Volume 3, Issue 9, pp 613–619 | Cite as

Robust optimization of the output voltage of nanogenerators by statistical design of experiments

  • Jinhui Song
  • Huizhi Xie
  • Wenzhuo Wu
  • V. Roshan Joseph
  • C. F. Jeff WuEmail author
  • Zhong Lin WangEmail author
Open Access
Research Article

Abstract

Nanogenerators were first demonstrated by deflecting aligned ZnO nanowires using a conductive atomic force microscopy (AFM) tip. The output of a nanogenerator is affected by three parameters: tip normal force, tip scanning speed, and tip abrasion. In this work, systematic experimental studies have been carried out to examine the combined effects of these three parameters on the output, using statistical design of experiments. A statistical model has been built to analyze the data and predict the optimal parameter settings. For an AFM tip of cone angle 70° coated with Pt, and ZnO nanowires with a diameter of 50 nm and lengths of 600 nm to 1 μm, the optimized parameters for the nanogenerator were found to be a normal force of 137 nN and scanning speed of 40 μm/s, rather than the conventional settings of 120 nN for the normal force and 30 μm/s for the scanning speed. A nanogenerator with the optimized settings has three times the average output voltage of one with the conventional settings.

Keywords

ZnO nanowire arrays robust parameter design nanogenerator piezoelectric properties 

References

  1. [1]
    Wang, Z. L.; Song, J. H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242–246.CrossRefADSPubMedGoogle Scholar
  2. [2]
    Song, J. H.; Zhou, J.; Wang, Z. L. Piezoelectric and semiconducting coupled power generating process of a single ZnO belt/wire. A technology for harvesting electricity from the environment. Nano Lett. 2006, 6, 1656–1662.CrossRefADSPubMedGoogle Scholar
  3. [3]
    Wang, X. D.; Song, J. H.; Liu, J.; Wang, Z. L. Directcurrent nanogenerator driven by ultrasonic waves. Science 2007, 316, 102–105.CrossRefADSPubMedGoogle Scholar
  4. [4]
    Xu, S.; Qin, Y.; Xu, C.; Wei, Y. G.; Yang, R. S.; Wang, Z. L. Self-powered nanowire devices. Nat. Nanotechnol. 2010, 5, 366–373.CrossRefADSPubMedGoogle Scholar
  5. [5]
    Yang, R. S.; Qin, Y.; Dai, L. M.; Wang, Z. L. Power generation with laterally-packaged piezoelectric fine wires. Nat. Nanotechnol. 2009, 4, 34–39.CrossRefADSPubMedGoogle Scholar
  6. [6]
    Qin, Y.; Wang, X. D.; Wang, Z. L. Microfibre-nanowire hybrid structure for energy scavenging. Nature 2008, 451, 809–813.CrossRefADSPubMedGoogle Scholar
  7. [7]
    Xu, S.; Wei, Y. G.; Liu, J.; Yang, R.; Wang, Z. L. Integrated multilayer nanogenerator fabricated using paired nanotip-to-nanowire brushes. Nano Lett. 2008, 8, 4027–4032.CrossRefADSPubMedGoogle Scholar
  8. [8]
    Service, R. F. Nanogenerators tap waste energy to power ultrasmall electronics. Science 2010, 328, 304–305.CrossRefADSPubMedGoogle Scholar
  9. [9]
    Lu, M. Y.; Song, J. H.; Lu, M. P.; Lee, C. Y.; Chen, L. J.; Wang, Z. L. ZnO-ZnS heterojunction and ZnS nanowire arrays for electricity generation. ACS Nano 2009, 3, 357–362.CrossRefPubMedGoogle Scholar
  10. [10]
    Lu, M. P.; Song, J. H.; Lu, M. Y.; Chen, M. T.; Gao, Y. F.; Chen, L. J.; Wang, Z. L. Piezoelectric nanogenerator using p-type ZnO nanowire arrays. Nano Lett. 2009, 9, 1223–1227.CrossRefADSPubMedGoogle Scholar
  11. [11]
    Wang, X. B.; Song, J. H.; Zhang, F.; He, C. Y.; Hu, Z.; Wang, Z. L. Electricity generation based on one-dimensional group-III nitride nanomaterials. Adv. Mater. 2010, 22, 2155–2158.CrossRefPubMedGoogle Scholar
  12. [12]
    Huang, C. T.; Song, J. H.; Lee, W. F.; Ding, Y.; Gao, Z. Y.; Hao, Y.; Chen, L. J.; Wang, Z. L. GaN nanowire arrays for high-output nanogenerators. J. Am. Chem. Soc. 2010, 132, 4766–4771.CrossRefPubMedGoogle Scholar
  13. [13]
    Pan, Z. W.; Dai, Z. R.; Wang, Z. L. Nanobelts of semiconducting oxides. Science 2001, 291, 1947–1949.CrossRefADSPubMedGoogle Scholar
  14. [14]
    Wu, C. F. J.; Hamada, M. S. Experiments: Planning, Analysis and Optimization, 2nd ed.; Wiley: New York, 2009.zbMATHGoogle Scholar
  15. [15]
    Draper, N. R.; Smith, H. Applied Regression Analysis, 3rd ed.; Wiley: New York, 1998.zbMATHGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaUSA
  2. 2.School of Industrial and Systems EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations