Nano Research

, Volume 3, Issue 9, pp 653–660 | Cite as

A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser

  • Zhipei Sun
  • Daniel Popa
  • Tawfique Hasan
  • Felice Torrisi
  • Fengqiu Wang
  • Edmund J. R. Kelleher
  • John C. Travers
  • Valeria Nicolosi
  • Andrea C. Ferrari
Open Access
Research Article

Abstract

We report an ultrafast laser mode-locked with a graphene saturable absorber. The linear dispersions of the Dirac electrons in graphene enable wideband tunability. We get ∼1 ps pulses, tunable between 1525 and 1559 nm, with stable mode-locking, insensitive to environmental perturbations.

Keywords

Graphene saturable absorber mode-locking fiber laser 

References

  1. [1]
    Letokhov, V. S. Laser biology and medicine. Nature 1985, 316, 325–330.CrossRefADSPubMedGoogle Scholar
  2. [2]
    Okhotnikov, O.; Grudinin, A.; Pessa, M. Ultra-fast fibre laser systems based on SESAM technology: New horizons and applications. New J. Phys. 2004, 6, 177.CrossRefADSGoogle Scholar
  3. [3]
    Okhotnikov, O. G.; Gomes, L.; Xiang, N.; Jouhti, T.; Grudinin, A. B. Mode-locked ytterbium fiber laser tunable in the 980–1070-nm spectral range. Opt. Lett. 2003, 28, 1522–1524.CrossRefADSPubMedGoogle Scholar
  4. [4]
    Ober, M. H.; Hofer, M.; Hofer, R.; Reider, G. A.; Sucha, G. D.; Fermann, M. E.; Harter, D.; Mendonca, C. A. C.; Chiu, T. H. Widely tunable femtosecond neodymium fiber laser. Opt. Lett. 1995, 20, 2303–2305.CrossRefADSPubMedGoogle Scholar
  5. [5]
    Tamura, K.; Kimura, Y.; Nakazawa, M. Femtosecond pulse generation over 82 nm wavelength span from passively mode-locked erbium-doped fiber laser. Electron. Lett. 1995, 31, 1062–1063.CrossRefGoogle Scholar
  6. [6]
    Tamura, K.; Doerr, C. R.; Haus, H. A.; Ippen, E. P. Soliton fiber ring laser stablization and tuning with a broad intracavity filter. IEEE Photonics Technol. Lett. 1994, 6, 697–699.CrossRefADSGoogle Scholar
  7. [7]
    Keller, U. Recent developments in compact ultrafast lasers. Nature 2003, 424, 831–838.CrossRefADSPubMedGoogle Scholar
  8. [8]
    Set, S. Y.; Yaguchi, H.; Tanaka, Y.; Jablonski, M. Ultrafast fiber pulsed lasers incorporating carbon nanotubes. IEEE J. Sel. Top. Quantum Electron. 2004, 10, 137–146.CrossRefGoogle Scholar
  9. [9]
    Yamashita, S.; Inoue, Y.; Maruyama, S.; Murakami, Y.; Yaguchi, H.; Jablonski, M.; Set, S. Y. Saturable absorbers incorporating carbon nanotubes directly synthesized onto substrates and fibers and their application to mode-locked fiber lasers. Opt. Lett. 2004, 29, 1581–1583.CrossRefADSPubMedGoogle Scholar
  10. [10]
    Schibli, T. R.; Minoshima, K.; Kataura, H.; Itoga, E.; Minami, N.; Kazaoui, S.; Miyashita, K.; Tokumoto, M.; Sakakibara, Y. Ultrashort pulse-generation by saturable absorber mirrors based on polymer-embedded carbon nanotubes. Opt. Express 2005, 13, 8025–8031.CrossRefADSPubMedGoogle Scholar
  11. [11]
    Nishizawa, N.; Seno, Y.; Sumimura, K.; Sakakibara, Y.; Itoga, E.; Kataura, H.; Itoh, K. All-polarization-maintaining Er-doped ultrashort-pulse fiber laser using carbon nanotube saturable absorber. Opt. Express 2008, 16, 9429–9435.CrossRefADSPubMedGoogle Scholar
  12. [12]
    Rozhin, A. G.; Scardaci, V.; Wang, F.; Hennrich, F.; White, I. H.; Milne, W. I.; Ferrari, A. C. Generation of ultra-fast laser pulses using nanotube mode-lockers. Phys. Stat. Sol. B 2006, 243, 3551–3555.CrossRefADSGoogle Scholar
  13. [13]
    Shohda, F.; Shirato, T.; Nakazawa, M.; Mata, J.; Tsukamoto, 147 fs, 51 MHz soliton fiber laser at 1.56 μm with a fiber-connector-type SWNT/P3HT saturable absorber. Opt. Express 2008, 16, 20943–20948.CrossRefADSPubMedGoogle Scholar
  14. [14]
    Wang, F.; Rozhin, A. G.; Scardaci, V.; Sun, Z.; Hennrich, F.; White, I. H.; Milne, W. I.; Ferrari, A. C. Widebandtuneable, nanotube mode-locked, fibre laser. Nat. Nanotechnol. 2008, 3, 738–742.CrossRefADSPubMedGoogle Scholar
  15. [15]
    Della Valle, G.; Osellame, R.; Galzerano, G.; Chiodo, N.; Cerullo, G.; Laporta, P.; Svelto, O.; Morgner, U.; Rozhin, A. G.; Scardaci, V.; Ferrari, A. C. Passive mode locking by carbon nanotubes in a femtosecond laser written waveguide laser. Appl. Phys. Lett. 2006, 89, 231115.CrossRefADSGoogle Scholar
  16. [16]
    Song, Y. W.; Yamashita, S.; Maruyama, S. Single-walled carbon nanotubes for high-energy optical pulse formation. Appl. Phys. Lett. 2008, 92, 021115.CrossRefADSGoogle Scholar
  17. [17]
    Scardaci, V.; Rozhin, A. G.; Hennrich, F.; Milne, W. I.; Ferrari, A. C. Carbon nanotube-polymer composites for photonic devices. Physica E 2007, 37, 115–118.CrossRefADSGoogle Scholar
  18. [18]
    Fong, K. H.; Kikuchi, K.; Goh, C. S.; Set, S. Y.; Grange, R.; Haiml, M.; Schlatter, A.; Keller, U. Solid-state Er:Yb:glass laser mode-locked by using single-wall carbon nanotube thin film. Opt. Lett. 2007, 32, 38–40.CrossRefADSPubMedGoogle Scholar
  19. [19]
    Scardaci, V.; Sun, Z.; Wang, F.; Rozhin, A. G.; Hasan, T.; Hennrich, F.; White, I. H.; Milne, W. I.; Ferrari, A. C. Carbon nanotube polycarbonate composites for ultrafast lasers. Adv. Mater. 2008, 20, 4040–4043.CrossRefGoogle Scholar
  20. [20]
    Solodyankin, M. A.; Obraztsova, E. D.; Lobach, A. S.; Chernov, A. I.; Tausenev, A. V.; Konov, V. I.; Dianov, E. M. Mode-locked 1.93 μm thulium fiber laser with a carbon nanotube absorber. Opt. Lett. 2008, 33, 1336–1338.CrossRefADSPubMedGoogle Scholar
  21. [21]
    Sun, Z.; Rozhin, A. G.; Wang, F.; Scardaci, V.; Milne, W. I.; White, I. H.; Hennrich, F.; Ferrari, A. C. L-band ultrafast fiber laser mode locked by carbon nanotubes. Appl. Phys. Lett. 2008, 93, 061114.CrossRefADSGoogle Scholar
  22. [22]
    Martinez, A.; Uchida, S.; Song, Y. W.; Ishigure, T.; Yamashita, S. Fabrication of carbon nanotube-poly-methyl-methacrylate composites for nonlinear photonic devices. Opt. Express 2008, 16, 11337–11343.CrossRefADSPubMedGoogle Scholar
  23. [23]
    Sun, Z.; Rozhin, A. G.; Wang, F.; Hasan, T.; Popa, D.; O’Neill, W.; Ferrari, A. C. A compact, high power, ultrafast laser mode-locked by carbon nanotubes. Appl. Phys. Lett. 2009, 95, 253102.CrossRefADSGoogle Scholar
  24. [24]
    Kurashima, Y.; Yokota, Y.; Miyamoto, I.; Kataura, H.; Sakakibara, Y. Mode-locking nanoporous alumina membrane embedded with carbon nanotube saturable absorber. Appl. Phys. Lett. 2009, 94, 223102.CrossRefADSGoogle Scholar
  25. [25]
    Uchida, S.; Martinez, A.; Song, Y. W.; Ishigure, T.; Yamashita, S. Carbon nanotube-doped polymer optical fiber. Opt. Lett. 2009, 34, 3077–3079.CrossRefPubMedGoogle Scholar
  26. [26]
    Kelleher, E. J. R.; Travers, J. C.; Sun, Z.; Rozhin, A. G.; Ferrari, A. C.; Popov, S. V.; Taylor, J. R. Nanosecond-pulse fiber lasers mode-locked with nanotubes. Appl. Phys. Lett. 2009, 95, 111108.CrossRefADSGoogle Scholar
  27. [27]
    Lim, J. K.; Knabe, K.; Tillman, K. A.; Neely, W.; Wang, Y. S.; Amezcua-Correa, R.; Couny, F.; Light, P. S.; Benabid, F.; Knight, J. C.; Corwin, K. L.; Nicholson, J. W.; Washburn, B. R. A phase-stabilized carbon nanotube fiber laser frequency comb. Opt. Express 2009, 17, 14115–14120.CrossRefADSPubMedGoogle Scholar
  28. [28]
    Kelleher, E. J. R.; Travers, J. C.; Ippen, E. P.; Sun, Z.; Ferrari, A. C.; Popov, S. V.; Taylor, J. R. Generation and direct measurement of giant chirp in a passively mode-locked laser. Opt. Lett. 2009, 34, 3526–3528.CrossRefADSPubMedGoogle Scholar
  29. [29]
    Kieu, K.; Wise, F. W. All-fiber normal-dispersion femtosecond laser. Opt. Express 2008, 16, 11453–11458.CrossRefADSPubMedGoogle Scholar
  30. [30]
    Nicholson, J. W.; Windeler, R. S.; DiGiovanni, D. J. Optically driven deposition of single-walled carbon-nanotube saturable absorbers on optical fiber end-faces. Opt. Express 2007, 15, 9176–9183.CrossRefADSPubMedGoogle Scholar
  31. [31]
    Kelleher, E. J. R.; Travers, J. C.; Sun, Z; Ferrari, A. C.; Golant, K. M.; Popov, S. V.; Taylor, J. R. Bismuth fiber integrated laser mode-locked by carbon nanotubes. Laser Phys. Lett., in press, DOI:10.1002/lapl.201010067.Google Scholar
  32. [32]
    Hasan, T.; Sun, Z.; Wang, F.; Bonaccorso, F.; Tan, P. H.; Rozhin, A. G.; Ferrari, A. C. Nanotube-polymer composites for ultrafast photonics. Adv. Mater. 2009, 21, 3874–3899.CrossRefGoogle Scholar
  33. [33]
    Sun, Z.; Hasan, T.; Wang, F.; Rozhin, A. G.; White, I. H.; Ferrari, A. C., Ultrafast stretched-pulse fiber laser mode-locked by carbon nanotubes. Nano Res. 2010, 3, 404–411.CrossRefGoogle Scholar
  34. [34]
    Martinez, A.; Zhou, K.; Bennion, I.; Yamashita, S. Passive mode-locked lasing by injecting a carbon nanotube-solution in the core of an optical fiber. Opt. Express 2010, 18, 11008–11014.CrossRefADSPubMedGoogle Scholar
  35. [35]
    Cho, W. B.; Yim, J. H.; Choi, S. Y.; Lee, S.; Schmidt, A.; Steinmeyer, G.; Griebner, U.; Petrov, V.; Yeom, D. I.; Kim, K.; Rotermund, F. Boosting the nonlinear optical response of carbon nanotube saturable absorbers for broadband mode-locking of bulk lasers. Adv. Funct. Mater. 2010, 20, 1937–1943.CrossRefGoogle Scholar
  36. [36]
    Senoo, Y.; Nishizawa, N.; Sakakibara, Y.; Sumimura, K.; Itoga, E.; Kataura, H.; Itoh, K. Polarization-maintaining, high-energy, wavelength-tunable, Er-doped ultrashort pulse fiber laser using carbon-nanotube polyimide film. Opt. Express 2009, 17, 20233–20241.CrossRefADSPubMedGoogle Scholar
  37. [37]
    Kivisto, S.; Hakulinen, T.; Kaskela, A.; Aitchison, B.; Brown, D. P.; Nasibulin, A. G.; Kauppinen, E. I.; Harkoen, A.; Okhotnikov, O. G. Carbon nanotube films for ultrafast broadband technology. Opt. Express 2009, 17, 2358–2363.CrossRefADSPubMedGoogle Scholar
  38. [38]
    Sun, Z.; Hasan, T.; Torrisi, F.; Popa, D.; Privitera, G.; Wang, F.; Bonaccorso, F.; Basko, D. M.; Ferrari, A. C. Graphene mode-locked ultratast laser. ACS Nano 2010, 4, 803–810.CrossRefPubMedGoogle Scholar
  39. [39]
    Zhang, H.; Tang, D. Y.; Zhao, L. M.; Bao, Q. L.; Loh, K. P. Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene. Opt. Express 2009, 17, 17630–17635.CrossRefADSPubMedGoogle Scholar
  40. [40]
    Bao, Q.; Zhang, H.; Wang, Y.; Ni, Z.; Yan, Y.; Shen, Z. X.; Loh, K. P.; Tang, D. Y. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater. 2009, 19, 3077–3083.CrossRefGoogle Scholar
  41. [41]
    Zhang, H.; Bao, Q. L.; Tang, D. Y.; Zhao, L. M.; Loh, K. Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker. Appl. Phys. Lett. 2009, 95, 141103.CrossRefADSGoogle Scholar
  42. [42]
    Song, Y. W.; Jang, S. Y.; Han, W. S.; Bae, M. K., Graphene mode-lockers for fiber lasers functioned with evanescent field interaction. Appl. Phys. Lett. 2010, 96, 051122.CrossRefADSGoogle Scholar
  43. [43]
    Tan, W. D.; Su, C. Y.; Knize, R. J.; Xie, G. Q.; Li, L. J.; Tang, D. Y. Mode locking of ceramic Nd: Yttrium aluminum garnet with graphene as a saturable absorber. Appl. Phys. Lett. 2010, 96, 031106.CrossRefADSGoogle Scholar
  44. [44]
    Bao, Q.; Zhang, H.; Yang, J. X.; Wang, S.; Tang, D. Y.; Jose, R.; Ramakrishna, S.; Lim, C. T.; Loh, K. P. Graphene-polymer nanofiber membrane for ultrafast photonics. Adv. Funct. Mater. 2010, 20, 782–791.CrossRefGoogle Scholar
  45. [45]
    Zhang, H.; Tang, D.; Knize, R. J.; Zhao, L.; Bao, Q.; Loh, K. P. Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser. Appl. Phys. Lett. 2010, 96, 111112.CrossRefADSGoogle Scholar
  46. [46]
    Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A. C. Graphene photonics and optoelectronics. Nat. Photonics. 2010, 4, 611–622.CrossRefGoogle Scholar
  47. [47]
    Agrawal, G. P. Applications of Nonlinear Fiber Optics.; Academic Press: London, 2001.Google Scholar
  48. [48]
    Braun, B.; Kärtner, F. X.; Zhang, G.; Moser, M.; Keller, U. 56-ps passively Q-switched diode-pumped microchip laser. Opt. Lett. 1997, 22, 381–383.CrossRefADSPubMedGoogle Scholar
  49. [49]
    Paschotta, R. Encyclopedia of Laser Physics and Technology; Wiley VCH: Weinheim, Germany, 2008.Google Scholar
  50. [50]
    Small, D. M.; Penkett, S. A.; Chapman, D. Studies on simple and mixed bile salt micelles by nuclear magnetic resonance spectroscopy. Biochim. Biophys. Acta 1969, 176, 178–189.PubMedGoogle Scholar
  51. [51]
    Sugihara, G.; Shigematsu, D. S.; Nagadome, S.; Lee, S.; Sasaki, Y.; Igimi, H. Thermodynamic study on the Langmuir adsorption of various bile salts including taurine and glycine conjugates onto graphite in water. Langmuir 2000, 16, 1825–1833.CrossRefGoogle Scholar
  52. [52]
    Sasaki, Y.; Igura, T.; Miyassu, Y. I.; Lee, S.; Nagadome, S.; Takiguchi, H.; Sugihara, G. The adsorption behavior of four bile salt species on graphite in water — Evaluation of effective hydrophobicity of bile acids. Colloids Surf. B 1995, 5, 241–247.CrossRefGoogle Scholar
  53. [53]
    Lotya, M.; Hernandez, Y.; King, P. J.; Smith, R. J.; Nicolosi, V.; Karlsson, L. S.; Blighe, F. M.; De, S.; Wang, Z.; McGovern, I. T.; Duesberg, G. S.; Coleman, J. N. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J. Am. Chem. Soc. 2009, 131, 3611–3620.CrossRefPubMedGoogle Scholar
  54. [54]
    De, S.; King, P. J.; Lotya, M.; O’Neill, A.; Doherty, E. M.; Hernandez, Y.; Duesberg, G. S.; Coleman, J. N. Flexible, transparent, conducting films of randomly stacked graphene from surfactant-stabilized, oxide-free graphene dispersions. Small 2010, 6, 458–464.CrossRefPubMedGoogle Scholar
  55. [55]
    Islam, M. F.; Rojas, E.; Bergey, D. M.; Johnson, A. T.; Yodh, A. G. High weight fraction surfactant solubilization of single-wall carbon nanotubes in water. Nano Lett. 2003, 3, 269–273.CrossRefADSGoogle Scholar
  56. [56]
    Mak, K. F.; Sfeir, M. Y.; Wu, Y.; Lui, C. H.; Misewich, J. A.; Heinz, T. F. Measurement of the optical conductivity of graphene. Phys. Rev. Lett. 2008, 101, 196405.CrossRefADSPubMedGoogle Scholar
  57. [57]
    Kravets, V. G.; Grigorenko, A. N.; Nair, R. R.; Blake, P.; Anissimova, S.; Novoselov, K. S.; Geim, A. K. Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption. Phys. Rev. B 2010, 81, 155413.CrossRefADSGoogle Scholar
  58. [58]
    Eberlein, T.; Bangert, U.; Nair, R. R.; Jones, R.; Gass, M.; Bleloch, A. L.; Novoselov, K. S.; Geim, A.; Briddon, P. R. Plasmon spectroscopy of free-standing graphene films. Phys. Rev. B 2008, 77, 233406.CrossRefADSGoogle Scholar
  59. [59]
    Hasan, T.; Scardaci, V.; Tan, P. H.; Rozhin, A. G.; Milne, W. I.; Ferrari, A. C. Stabilization and “de-bundling” of single-wall carbon nanotube dispersions in N-Methyl-2-pyrrolidone (NMP) by polyvinylpyrrolidone (PVP). J. Phys. Chem. C 2007, 111, 12594–12602.CrossRefGoogle Scholar
  60. [60]
    Giordani, S.; Bergin, S. D.; Nicolosi, V.; Lebedkin, S.; Kappes, M. M.; Blau, W. J.; Coleman, J. N. Debundling of single-walled nanotubes by dilution: Observation of large populations of individual nanotubes in amide solvent dispersions. J. Phys. Chem. B 2006, 110, 15708–15718.CrossRefPubMedGoogle Scholar
  61. [61]
    Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z. Y.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun’ko, Y. K.; Boland, J. J.; Niraj, P.; Duesberg, G.; Krishnamurthy, S.; Goodhue, R.; Hutchison, J.; Scardaci, V.; Ferrari, A. C.; Coleman, J. N. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 2008, 3, 563–568.CrossRefPubMedGoogle Scholar
  62. [62]
    Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S.; Geim, A. K. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.CrossRefADSPubMedGoogle Scholar
  63. [63]
    Ferrari, A. C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000, 61, 14095–14107.CrossRefADSGoogle Scholar
  64. [64]
    Tuinstra, F.; Koenig, J. L. Raman spectrum of graphite. J. Chem. Phys. 1970, 53, 1126–1130.CrossRefADSGoogle Scholar
  65. [65]
    Casiraghi, C.; Hartschuh, A.; Qian, H.; Piscanec, S.; Georgi, C.; Fasoli, A.; Novoselov, K. S.; Basko, D. M.; Ferrari, A. C. Raman spectroscopy of graphene edges. Nano Lett. 2009, 9, 1433–1441.CrossRefADSPubMedGoogle Scholar
  66. [66]
    Latil, S.; Meunier, V.; Henrard, L. Massless fermions in multilayer graphitic systems with misoriented layers: Ab initio calculations and experimental fingerprints. Phys. Rev. B 2007, 76, 201402.CrossRefADSGoogle Scholar
  67. [67]
    Dennis, M. L.; Duling, I. N. Experimental study of side band genaration in femtosecond fiber lasers. IEEE J. Quantum Electron. 1994, 30, 1469–1477.CrossRefADSGoogle Scholar
  68. [68]
    von der Linde, D. Characterization of the noise in continuously operating mode-locked lasers. Appl. Phys. B 1986, 39, 201–217.CrossRefADSGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Zhipei Sun
    • 1
  • Daniel Popa
    • 1
  • Tawfique Hasan
    • 1
  • Felice Torrisi
    • 1
  • Fengqiu Wang
    • 1
  • Edmund J. R. Kelleher
    • 2
  • John C. Travers
    • 2
  • Valeria Nicolosi
    • 3
  • Andrea C. Ferrari
    • 1
  1. 1.Department of EngineeringUniversity of CambridgeCambridgeUK
  2. 2.Physics DepartmentImperial CollegeLondonUK
  3. 3.Department of MaterialsUniversity of OxfordOxfordUK

Personalised recommendations