Nano Research

, Volume 3, Issue 9, pp 632–642 | Cite as

Facile synthesis of porous carbon nitride spheres with hierarchical three-dimensional mesostructures for CO2 capture

  • Qiang Li
  • Jianping Yang
  • Dan Feng
  • Zhangxiong Wu
  • Qingling Wu
  • Sung Soo Park
  • Chang-Sik Ha
  • Dongyuan Zhao
Open Access
Research Article

Abstract

Porous carbon nitride (CN) spheres with partially crystalline frameworks have been successfully synthesized via a nanocasting approach by using spherical mesoporous cellular silica foams (MCFs) as a hard template, and ethylenediamine and carbon tetrachloride as precursors. The resulting spherical CN materials have uniform diameters of ca. 4 μm, hierarchical three-dimensional (3-D) mesostructures with small and large mesopores with pore diameters centered at ca. 4.0 and 43 nm, respectively, a relatively high BET surface area of ∼550 m2/g, and a pore volume of 0.90 cm3/g. High-resolution transmission electron microscope (HRTEM) images, wide-angle X-ray diffraction (XRD) patterns, and Raman spectra demonstrate that the porous CN material has a partly graphitized structure. In addition, elemental analyses, X-ray photoelectron spectra (XPS), Fourier transform infrared spectra (FT-IR), and CO2 temperature-programmed desorption (CO2-TPD) show that the material has a high nitrogen content (17.8 wt%) with nitrogen-containing groups and abundant basic sites. The hierarchical porous CN spheres have excellent CO2 capture properties with a capacity of 2.90 mmol/g at 25 °C and 0.97 mmol/g at 75 °C, superior to those of the pure carbon materials with analogous mesostructures. This can be mainly attributed to the abundant nitrogen-containing basic groups, hierarchical mesostructure, relatively high BET surface area and stable framework. Furthermore, the presence of a large number of micropores and small mesopores also enhance the CO2 capture performance, owing to the capillary condensation effect.

Keywords

Mesoporous materials carbon nitride nanocasting sphere hard template CO2 capture 

Supplementary material

12274_2010_23_MOESM1_ESM.pdf (462 kb)
Supplementary material, approximately 340 KB.

References

  1. [1]
    Kawaguchi, M.; Yagi, S.; Enomoto, H. Chemical preparation and characterization of nitrogen-rich carbon nitride powders. Carbon 2004, 42, 345–350.CrossRefGoogle Scholar
  2. [2]
    Khabashesku, V. N.; Zimmerman, J. L.; Margrave, J. L. Powder synthesis and characterization of amorphous carbon nitride. Chem. Mater. 2000, 12, 3264–3270.CrossRefGoogle Scholar
  3. [3]
    Huynh, M. H. V.; Hiskey, M. A.; Archuleta, J. G.; Roemer, E. L. Preparation of nitrogen-rich nanolayered, nanoclustered, and nanodendritic carbon nitrides. Angew. Chem. Int. Ed. 2005, 44, 737–739.CrossRefGoogle Scholar
  4. [4]
    Pevida, C.; Drage, T. C.; Snape, C. E. Silica-templated melamine-formaldehyde resin derived adsorbents for CO2 capture. Carbon 2008, 46, 1464–1474.CrossRefGoogle Scholar
  5. [5]
    Goettmann, F.; Fischer, A.; Antonietti, M.; Thomas, A. Mesoporous graphitic carbon nitride as a versatile, metal-free catalyst for the cyclisation of functional nitriles and alkynes. New J. Chem. 2007, 31, 1455–1460.CrossRefGoogle Scholar
  6. [6]
    Kim, M.; Hwang, S.; Yu, J. -S. Novel ordered nanoporous graphitic C3N4 as a support for Pt-Ru anode catalyst in direct methanol fuel cell. J. Mater. Chem. 2007, 17, 1656–1659.CrossRefGoogle Scholar
  7. [7]
    Chen, X.; Jun, Y. -S.; Takanabe, K.; Maeda, K.; Domen, K.; Fu, X.; Antonietti, M.; Wang, X. Ordered mesoporous SBA-15 type graphitic carbon nitride: A semiconductor host structure for photocatalytic hydrogen evolution with visible light. Chem. Mater. 2009, 21, 4093–4095.CrossRefGoogle Scholar
  8. [8]
    Vinu, A. Two-dimensional hexagonally-ordered mesoporous carbon nitrides with tunable pore diameter, surface area and nitrogen content. Adv. Funct. Mater. 2008, 18, 816–827.CrossRefGoogle Scholar
  9. [9]
    Vinu, A.; Ariga, K.; Mori, T.; Nakanishi, T.; Hishita, S.; Golberg, D.; Bando, Y. Preparation and characterization of well-ordered hexagonal mesoporous carbon nitride. Adv. Mater. 2005, 17, 1648–1652.CrossRefGoogle Scholar
  10. [10]
    Jin, X.; Balasubramanian, V. V.; Selvan, S. T.; Sawant, D. P.; Chari, M. A.; Lu, G. Q.; Vinu, A. Highly ordered mesoporous carbon nitride nanoparticles with high nitrogen content: A metal-free basic catalyst. Angew. Chem. Int. Ed. 2009, 48, 7884–7887.CrossRefGoogle Scholar
  11. [11]
    Thomas, A.; Fischer, A.; Goettmann, F.; Antonietti, M.; Muller, J. -O.; Schlogl, R.; Carlsson, J. M. Graphitic carbon nitride materials: Variation of structure and morphology and their use as metal-free catalysts. J. Mater. Chem. 2008, 18, 4893–4908.CrossRefGoogle Scholar
  12. [12]
    Fischer, A.; Antonietti, M.; Thomas, A. Growth confined by the nitrogen source: Synthesis of pure metal nitride nanoparticles in mesoporous graphitic carbon nitride. Adv. Mater. 2007, 19, 264–267.CrossRefGoogle Scholar
  13. [13]
    Jun, Y. -S.; Hong, W. H.; Antonietti, M.; Thomas, A. Mesoporous, 2D hexagonal carbon nitride and titanium nitride/carbon composites. Adv. Mater. 2009, 21, 4270–4274.CrossRefGoogle Scholar
  14. [14]
    Liu, L.; Ma, D.; Zheng, H.; Li, X.; Cheng, M.; Bao, X. Synthesis and characterization of microporous carbon nitride. Micropor. Mesopor. Mater. 2008, 110, 216–222.CrossRefGoogle Scholar
  15. [15]
    Fischer, A.; Jun, Y. -S.; Thomas, A.; Antonietti, M. Synthesis of high-surface-area TiN/carbon composite materials with hierarchical porosity via “reactive templating”. Chem. Mater. 2008, 20, 7383–7389.CrossRefGoogle Scholar
  16. [16]
    Figueroa, J. D.; Fout, T.; Plasynski, S.; McIlvried, H.; Srivastava, R. D. Advances in CO2 capture technology—The US Department of Energy’s Carbon Sequestration Program. Int. J. Greenhouse Gas Control 2008, 2, 9–20.CrossRefGoogle Scholar
  17. [17]
    Seki, T.; Kokubo, Y.; Ichikawa, S.; Suzuki, T.; Kayaki, Y.; Ikariya, T. Mesoporous silica-catalysed continuous chemical fixation of CO2 with N,N,-dimethylethylenediamine in supercritical CO2: The efficient synthesis of 1,3-dimethyl-2-imidazolidinone. Chem. Commun. 2009, 349–351.Google Scholar
  18. [18]
    Zhao, C.; Chen, X.; Zhao, C. CO2 absorption using dry potassium-based sorbents with different supports. Energy Fuels 2009, 23, 4683–4687.CrossRefGoogle Scholar
  19. [19]
    Thote, J. A.; Iyer, K. S.; Chatti, R.; Labhsetwar, N. K.; Biniwale, R. B.; Rayalu, S. S. In situ nitrogen enriched carbon for carbon dioxide capture. Carbon 2010, 48, 396–402.CrossRefGoogle Scholar
  20. [20]
    Drage, T. C.; Arenillas, A.; Smith, K. M.; Pevida, C.; Piippo, S.; Snape, C. E. Preparation of carbon dioxide adsorbents from the chemical activation of urea-formaldehyde and melamine-formaldehyde resins. Fuel 2007, 86, 22–31.CrossRefGoogle Scholar
  21. [21]
    Liang, Z.; Fadhel, B.; Schneider, C. J.; Chaffee, A. L. Adsorption of CO2 on mesocellular siliceous foam iteratively functionalized with dendrimers. Adsorption 2009, 15, 429–437.CrossRefGoogle Scholar
  22. [22]
    Zelenak, V.; Halamova, D.; Gaberova, L.; Bloch, E.; Llewellyn, P. Amine-modified SBA-12 mesoporous silica for carbon dioxide capture: Effect of amine basicity on sorption properties. Micropor. Mesopor. Mater. 2008, 116, 358–364.CrossRefGoogle Scholar
  23. [23]
    Rinker, E.; Ashour, S. S.; Sandall, O. C. Absorption of carbon dioxide into aqueous blends of diethanolamine and methyldiethanolamine. Ind. Eng. Chem. Res. 2000, 39, 4346–4356.CrossRefGoogle Scholar
  24. [24]
    Kohl, A.; Nielsen, R. Gas Purification, 5th ed.; Gulf Publishing Co.: Houston, 1997.Google Scholar
  25. [25]
    Pevida, C.; Plaza, M. G.; Arias, B.; Fermoso, J.; Rubiera, F.; Pis, J. J. Surface modification of activated carbons for CO2 capture. Appl. Surf. Sci. 2008, 254, 7165–7172.CrossRefADSGoogle Scholar
  26. [26]
    Plaza, M. G.; Pevida, C.; Arenillas, A.; Rubiera, F.; Pis, J. J. CO2 capture by adsorption with nitrogen enriched carbons. Fuel 2007, 86, 2204–2212.CrossRefGoogle Scholar
  27. [27]
    Han, Y.; Lee, S. S.; Ying, J. Y. Spherical siliceous mesocellular foam particles for high-speed size exclusion chromatography. Chem. Mater. 2007, 19, 2292–2298.CrossRefGoogle Scholar
  28. [28]
    Meng, Y.; Gu, D.; Zhang, F.; Shi, Y.; Yang, H.; Li, Z.; Yu, C.; Tu, B.; Zhao, D. Y. Ordered mesoporous polymers and homologous carbon frameworks: Amphiphilic surfactant templating and direct transformation. Angew. Chem. Int. Ed. 2005, 44, 7053–7059.CrossRefGoogle Scholar
  29. [29]
    Sanchez-Lopez, J. C.; Donnet, C.; Lefebvre, F.; Fernandez-Ramos, C.; Fernandez, A. Bonding structure in amorphous carbon nitride: A spectroscopic and nuclear magnetic resonance study. J. Appl. Phys. 2001, 90, 675–681.CrossRefADSGoogle Scholar
  30. [30]
    Marton, D.; Boyd, K. J.; Al-Bayati, A. H.; Todorov, S. S.; Rabalais, J. W. Carbon nitride deposited using energetic species-A2-phase system. Phys. Rev. Lett. 1994, 73, 118–121.CrossRefADSPubMedGoogle Scholar
  31. [31]
    Chen, Y. H.; Tay, B. K.; Lau, S. P.; Shi, X.; Qiao, X. L.; Chen, J. G.; Wu, Y. P.; Sun, Z. H.; Xie, C. S. Synthesis of superhard and elastic carbon nitride films by filtered cathodic vacuum arc combined with radio frequency ion beam source. J. Mater. Res. 2002, 17, 521–524.CrossRefADSGoogle Scholar
  32. [32]
    Zelenák, V.; Badanicová, M.; Halamová, D.; Cejka, J.; Zukal, A.; Murafa, N.; Goerigk, G. Amine-modified ordered mesoporous silica: Effect of pore size on carbon dioxide capture. Chem. Eng. J. 2008, 144, 336–342.CrossRefGoogle Scholar
  33. [33]
    Chen, C.; Yang, S. -T.; Ahn, W. -S.; Ryoo, R. Amine-impregnated silica monolith with a hierarchical pore structure: enhancement of CO2 capture capacity. Chem. Commun. 2009, 3627–3629.Google Scholar
  34. [34]
    Holland, B. T.; Abrams, L.; Stein, A. Dual templating of macroporous silicates with zeolitic microporous frameworks. J. Am. Chem. Soc. 1999, 121, 4308–4309.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Qiang Li
    • 1
  • Jianping Yang
    • 1
  • Dan Feng
    • 1
  • Zhangxiong Wu
    • 1
  • Qingling Wu
    • 1
  • Sung Soo Park
    • 2
  • Chang-Sik Ha
    • 2
  • Dongyuan Zhao
    • 1
  1. 1.Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced MaterialsFudan UniversityShanghaiChina
  2. 2.Department of Polymer Science and EngineeringPusan National UniversityBusanKorea

Personalised recommendations