Nano Research

, Volume 3, Issue 8, pp 537–544 | Cite as

Micro- and nanostripes of self-assembled Au nanocrystal superlattices by direct micromolding

  • Boya Radha
  • Giridhar U. KulkarniEmail author
Open Access
Research Article


A simple, inexpensive direct micromolding method for patterning Au nanocrystal superlattices using a polydimethylsiloxane (PDMS) stamp has been developed. The method involves in situ synthesis of Au(I) dodecanethiolate and its decomposition leading to Au nanocrystals in the microchannels of the stamp which order themselves to form patterned superlattice stripes, in conformity with the stamp geometry. Owing to its insolubility in common solvents, the dodecanethiolate was made by reacting Au(PPh3)Cl and dodecanethiol in situ inside the microchannels, by injecting first the former solution in toluene at room temperature followed by the thiol solution at 120 °C. Annealing the reaction mixture at 250 °C, resulted in formation of nanocrystals (with a mean diameter of 7.5 nm) and hexagonal ordering. By using an external pressure while molding, parallel stripes with sub-100 nm widths were obtained. The choice of parameters such as injection temperature of the thiol and concentrations is shown to be important if an ordered superlattice is to be obtained. In addition, these parameters can be varied as a means to control the nanocrystal size.


nanolithography soft lithography metal nanocrystal superlattice micromolding direct patterning 

Supplementary material

12274_2010_14_MOESM1_ESM.pdf (996 kb)
Supplementary material, approximately 997 KB.


  1. [1]
    Brust, M. Nanoparticle ensembles-nanocrystals come to order. Nat. Mater. 2005, 4, 364–365.CrossRefPubMedADSGoogle Scholar
  2. [2]
    Rao, C. N. R.; Kulkarni, G. U.; Thomas, P. J.; Edwards, P. P. Metal nanoparticles and their assemblies. Chem. Soc. Rev. 2000, 29, 27–35.CrossRefGoogle Scholar
  3. [3]
    Kinge, S.; Crego-Calama, M.; Reinhoudt, D. N. Self-assembling nanoparticles at surfaces and interfaces. ChemPhysChem 2008, 9, 20–42.CrossRefPubMedGoogle Scholar
  4. [4]
    Agrawal, V. V.; Varghese, N.; Kulkami, G. U.; Rao, C. N. R. Effects of changes in the interparticle separation induced by alkanethiols on the surface plasmon band and other properties of nanocrystalline gold films. Langmuir 2008, 24, 2494–2500.CrossRefPubMedGoogle Scholar
  5. [5]
    Salzemann, C.; Zhai, W.; Goubet, N.; Pileni, M. P. How to tune the Au internanocrystal distance in two-dimensional self-ordered superlattices. J. Phys. Chem. Lett. 2010, 1, 149–154.CrossRefGoogle Scholar
  6. [6]
    Brock, S. L. All-inorganic nanocrystal arrays. Angew. Chem. Int. Ed. 2009, 48, 7484–7486.CrossRefGoogle Scholar
  7. [7]
    Sun, S. H.; Murray, C. B.; Weller, D.; Folks, L.; Moser, A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 2000, 287, 1989–1992.CrossRefPubMedADSGoogle Scholar
  8. [8]
    Teranishi, T. Fabrication and electronic properties of gold nanoparticle superlattices. C. R. Chimie 2003, 6, 979–987.Google Scholar
  9. [9]
    Datta, S.; Janes, D. B.; Andres, R. P.; Kubiak, C. P.; Reifenberger, R. G. Molecular ribbons. Semicond. Sci. Tech. 1998, 13, 1347–1353.CrossRefADSGoogle Scholar
  10. [10]
    Chen, C. F.; Tzeng, S. D.; Chen, H. Y.; Lin, K. J.; Gwo, S. Tunable plasmonic response from alkanethiolate-stabilized gold nanoparticle superlattices: Evidence of near-field coupling. J. Am. Chem. Soc. 2008, 130, 824–825.CrossRefPubMedGoogle Scholar
  11. [11]
    Berven, C. A.; Wybourne, M. N.; Longstreth, L.; Hutchison, J. E. Nanoparticle based Boolean logic. Physica E 2003, 19, 246–250.CrossRefADSGoogle Scholar
  12. [12]
    Collier, C. P.; Saykally, R. J.; Shiang, J. J.; Henrichs, S. E.; Heath, J. R. Reversible tuning of silver quantum dot monolayers through the metal-insulator transition. Science 1997, 277, 1978–1981.CrossRefGoogle Scholar
  13. [13]
    Markovich, G.; Collier, C. P.; Henrichs, S. E.; Remacle, F.; Levine, R. D.; Heath, J. R. Architectonic quantum dot solids. Acc. Chem. Res. 1999, 32, 415–423.CrossRefGoogle Scholar
  14. [14]
    Black, C. T.; Murray, C. B.; Sandstrom, R. L.; Sun, S. H., Spin-dependent tunneling in self-assembled cobalt-nanocrystal superlattices. Science 2000, 290, 1131–1134.CrossRefPubMedADSGoogle Scholar
  15. [15]
    Warner, M. G.; Hutchison, J. E. Linear assemblies of nanoparticles electrostatically organized on DNA scaffolds. Nat. Mater. 2003, 2, 272–277.CrossRefPubMedADSGoogle Scholar
  16. [16]
    Shibu, E. S.; Habeeb Muhammed, M. A.; Kimura, K.; Pradeep, T. Fluorescent superlattices of gold nanoparticles: A new class of functional materials. Nano Res. 2009, 2, 220–234.CrossRefGoogle Scholar
  17. [17]
    Pileni, M. P. Supracrystals of inorganic nanocrystals: An open challenge for new physical properties. Acc. Chem. Res. 2008, 41, 1799–1809.CrossRefPubMedGoogle Scholar
  18. [18]
    Hamann, H. F.; Woods, S. I.; Sun, S. Direct thermal patterning of self-assembled nanoparticles. Nano Lett. 2003, 3, 1643–1645.CrossRefADSGoogle Scholar
  19. [19]
    Glass, R.; Arnold, M.; Blummel, J.; Kuller, A.; Moller, M.; Spatz, J. P. Micro-nanostructured interfaces fabricated by the use of inorganic block copolymer micellar monolayers as negative resist for electron-beam lithography. Adv. Funct. Mater. 2003, 13, 569–575.CrossRefGoogle Scholar
  20. [20]
    Corbierre, M. K.; Beerens, J.; Lennox, R. B. Gold nanoparticles generated by electron beam lithography of gold(I)-thiolate thin films. Chem. Mater. 2005, 17, 5774–5779.CrossRefGoogle Scholar
  21. [21]
    Corbierre, M. K.; Beerens, J.; Beauvais, J.; Lennox, R. B. Uniform one-dimensional arrays of tunable gold nanoparticles with tunable interparticle distances. Chem. Mater. 2005, 18, 2628–2631.CrossRefGoogle Scholar
  22. [22]
    Werts, M. H. V.; Lambert, M.; Bourgoin, J. P.; Brust, M. Nanometer scale patterning of Langmuir-Blodgett films of gold nanoparticles by electron beam lithography. Nano Lett. 2002, 2, 43–47.CrossRefADSGoogle Scholar
  23. [23]
    Lohau, J.; Friedrichowski, S.; Dumpich, G.; Wassermann, E. F. Electron-beam lithography with metal colloids: Direct writing of metallic nanostructures. J. Vac. Sci. Technol. B 1998, 16, 77–79.CrossRefGoogle Scholar
  24. [24]
    Hoffmann, P.; Benassayag, G.; Gierak, J.; Flicstein, J.; Maarstumm, M.; Vandenbergh, H. Direct writing of gold nanostructures using a gold-cluster compound and a focused-ion beam. Appl. Phys. 1993, 74, 7588–7591.CrossRefGoogle Scholar
  25. [25]
    Kim, H.; Kim, J.; Yang, H. J.; Suh, J.; Kim, T.; Han, B. W.; Kim, S.; Kim, D. S.; Pikhitsa, P. V.; Choi, M. Parallel patterning of nanoparticles via electrodynamic focusing of charged aerosols. Nat. Nanotechnol. 2006, 1, 117–121.CrossRefPubMedADSGoogle Scholar
  26. [26]
    Lee, J. P.; Kim, E. U.; Koh, H. D.; Kang, N. G.; Jung, G. Y.; Lee, J. S. The fabrication of nanopatterns with Au nanoparticles—embedded micelles via nanoimprint lithography. Nanotechnology 2009, 20, 365301.CrossRefPubMedGoogle Scholar
  27. [27]
    Santhanam, V.; Andres, R. P. Microcontact printing of uniform nanoparticle arrays. Nano Lett. 2004, 4, 41–44.CrossRefADSGoogle Scholar
  28. [28]
    Yun, S. H.; Sohn, B. H.; Jung, J. C.; Zin, W. C.; Ree, M.; Park, J. W. Micropatterning of a single layer of nanoparticles by lithographical methods with diblock copolymer micelles. Nanotechnology 2006, 17, 450–454.CrossRefADSGoogle Scholar
  29. [29]
    Kraus, T.; Malaquin, L.; Schmid, H.; Riess, W.; Spencer, N. D.; Wolf, H. Nanoparticle printing with single-particle resolution. Nat. Nanotechnol. 2007, 2, 570–576.CrossRefPubMedADSGoogle Scholar
  30. [30]
    Chen, J.; Mela, P.; Muller, M.; Lensen, M. C. Microcontact deprinting: A technique to pattern gold nanoparticles. ACS Nano 2009, 3, 1451–1456.CrossRefPubMedGoogle Scholar
  31. [31]
    Cavallini, M.; Biscarini, F. Nanostructuring conjugated materials by lithographically controlled wetting. Nano Lett. 2003, 3, 1269–1271.CrossRefADSGoogle Scholar
  32. [32]
    Lu, N.; Chen, X. D.; Molenda, D.; Naber, A.; Fuchs, H.; Talapin, D. V.; Weller, H.; Muller, J.; Lupton, J. M.; Feldmann, J.; Rogach, A. L.; Chi, L. F. Lateral patterning of luminescent CdSe nanocrystals by selective dewetting from self-assembled organic templates. Nano Lett. 2004, 4, 885–888.CrossRefADSGoogle Scholar
  33. [33]
    Cheng, W. L.; Park, N. Y.; Walter, M. T.; Hartman, M. R.; Luo, D. Nanopatterning self-assembled nanoparticle superlattices by moulding microdroplets. Nat. Nanotechnol. 2008, 3, 682–690.CrossRefPubMedADSGoogle Scholar
  34. [34]
    Cheng, W. L.; Campolongo, M. J.; Cha, J. J.; Tan, S. J.; Umbach, C. C.; Muller, D. A.; Luo, D. Free-standing nanoparticle superlattice sheets controlled by DNA. Nat. Mater. 2009, 8, 519–525.CrossRefPubMedADSGoogle Scholar
  35. [35]
    Gates, B. D.; Xu, Q.; Love, J. C.; Wolfe, D. B.; Whitesides, G. M. Unconventional nanofabrication. Ann. Rev. Mater. Res. 2004, 34, 339–372.CrossRefADSGoogle Scholar
  36. [36]
    Kim, E.; Xia, Y.; Whitesides, G. M. Micromolding in capillaries: Applications in materials science. J. Am. Chem. Soc. 1996, 118, 5722–5731.CrossRefGoogle Scholar
  37. [37]
    Martin, C. P.; Blunt, M. O.; Pauliac-Vaujour, E.; Stannard, A.; Moriarty, P.; Vancea, I.; Thiele, U. Controlling pattern formation in nanoparticle assemblies via directed solvent dewetting. Phys. Rev. Lett. 2007, 99, 116103.CrossRefPubMedADSGoogle Scholar
  38. [38]
    Rabani, E.; Reichman, D. R.; Geissler, P. L.; Brus, L. E. Drying-mediated self-assembly of nanoparticles. Nature 2003, 426, 271–274.CrossRefPubMedADSGoogle Scholar
  39. [39]
    Akey, A.; Lu, C.; Yang, L.; Herman, I. P. Formation of thick, large-area nanoparticle superlattices in lithographically defined geometries. Nano Lett. 2010, 10, 1517–1521.CrossRefPubMedADSGoogle Scholar
  40. [40]
    Boisselier, E.; Astruc, D. Gold nanoparticles in nanomedicine: Preparations, imaging, diagnostics, therapies and toxicity. Chem. Soc. Rev. 2009, 38, 1759–1782.CrossRefPubMedGoogle Scholar
  41. [41]
    Murphy, C. J.; Gole, A. M.; Stone, J. W.; Sisco, P. N.; Alkilany, A. M.; Goldsmith, E. C.; Baxter, S. C. Gold nanoparticles in biology: Beyond toxicity to cellular imaging. Acc. Chem. Res. 2008, 41, 1721–1730.CrossRefPubMedGoogle Scholar
  42. [42]
    Rosi, N. L.; Giljohann, D. A.; Thaxton, C. S.; Lytton-Jean, A. K. R.; Han, M. S.; Mirkin, C. A. Oligonucleotidemodified gold nanoparticles for intracellular gene regulation. Science 2006, 312, 1027–1030.CrossRefPubMedADSGoogle Scholar
  43. [43]
    For instance in the Brust method, a complex, AuCl44-tetraoctylammonium bromide-alkanethiol serves as precursor for Au nanocrystals with NaBH4 as the reducing agent.Google Scholar
  44. [44]
    Carotenuto, G.; Martorana, B.; Perlo, P. B.; Nicolais, L. A universal method for the synthesis of metal and metal sulfide clusters embedded in polymer matrices. J. Mater. Chem. 2003, 13, 2927–2930.CrossRefGoogle Scholar
  45. [45]
    Nakamoto, M.; Yamamoto, M.; Fukusumi, M. Thermolysis of gold(I) thiolate complexes producing novel gold nanoparticles passivated by alkyl groups. Chem. Commun. 2002, 1622–1623.Google Scholar
  46. [46]
    Thomas, P. J.; Kulkarni, G. U.; Rao, C. N. R. An investigation of two-dimensional arrays of thiolized Pd nanocrystals. J. Phys. Chem. B 2000, 104, 8138–8144.CrossRefGoogle Scholar
  47. [47]
    Ristau, R.; Tiruvalam, R.; Clasen, P. L.; Gorskowski, E. P.; Harmer, M. P.; Kiely, C. J.; Hussain, I.; Brust, M. Electron microscopy studies of the thermal stability of gold nanoparticle arrays. Gold Bull. 2009, 42, 133–143.Google Scholar
  48. [48]
    Sidhaye, D. S.; Prasad, B. L. V. Melting characteristics of superlattices of alkanethiol-capped gold nanoparticles: The “excluded” story of excess thiol. Chem. Mater. 2010, 22, 1680–1685.CrossRefGoogle Scholar
  49. [49]
    Radha, B.; Kulkarni, G. U. A modified micromolding method for sub-100 nm direct patterning of Pd nanowires. Small 2009, 5, 2271–2275.CrossRefPubMedGoogle Scholar
  50. [50]
    Sparreboom, W.; van den Berg, A.; Eijkel, J. C. T. Principles and applications of nanofluidic transport. Nat. Nanotechnol. 2009, 4, 713–720.CrossRefPubMedADSGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Chemistry and Physics of Materials Unit and DST Unit on NanoscienceJawaharlal Nehru Centre for Advanced Scientific ResearchBangaloreIndia

Personalised recommendations