Nano Research

, Volume 3, Issue 7, pp 520–527 | Cite as

Biomimetic corrugated silicon nanocone arrays for self-cleaning antireflection coatings

  • Yandong Wang
  • Nan Lu
  • Hongbo Xu
  • Gang Shi
  • Miaojun Xu
  • Xiaowen Lin
  • Haibo Li
  • Wentao Wang
  • Dianpeng Qi
  • Yanqing Lu
  • Lifeng Chi
Open Access
Research Article

Abstract

Corrugated silicon nanocone (SiNC) arrays have been fabricated on a silicon wafer by two polystyrene-sphere-monolayer-masked etching steps in order to create high-performance antireflective coatings. The reflectance was reduced from above 35% to less than 0.7% in the range 400–1050 nm, and it remained below 0.5% at incidence angles up to 70° at 632.8 nm for both s- and p-polarized light. The fluorinated corrugated SiNC array surface exhibits superhydrophobic properties with a water contact angle of 164°.

Keywords

Antireflection silicon nancone (SiNC) arrays reactive ion etching nanosphere lithography superhydrophobic 

Supplementary material

12274_2010_12_MOESM1_ESM.pdf (596 kb)
Supplementary material, approximately 340 KB.

References

  1. [1]
    Striemer, C. C.; Fauchet, P. M. Dynamic etching of silicon for broadband antireflection applications. Appl. Phys. Lett. 2002, 81, 2980–2982.CrossRefADSGoogle Scholar
  2. [2]
    Lee, Y. J.; Ruby, D. S.; Peters, D. W.; McKenzie, B. B.; Hsu, J. W. P. ZnO nanostructures as efficient antireflection layers in solar cells. Nano Lett. 2008, 8, 1501–1505.CrossRefPubMedADSGoogle Scholar
  3. [3]
    Gombert, A.; Glaubitt, W.; Rose, K.; Dreibholz, J.; Blasi, B.; Heinzel, A.; Sporn, D.; Doll, W.; Wittwer, V. Antireflective transparent covers for solar devices. Sol. Energy 2000, 68, 357–360.CrossRefGoogle Scholar
  4. [4]
    Lee, C.; Bae, S. Y.; Mobasser, S.; Manohara, H. A novel silicon nanotips antireflection surface for the micro sun sensor. Nano Lett. 2005, 5, 2438–2442.CrossRefPubMedADSGoogle Scholar
  5. [5]
    Min, W. L.; Jiang, B.; Jiang, P. Bioinspired self-cleaning antireflection coatings. Adv. Mater. 2008, 20, 3914–3918.CrossRefGoogle Scholar
  6. [6]
    Zhu, J.; Yu, Z. F.; Burkhard, G. F.; Hsu, C. M.; Connor, S. T.; Xu, Y. Q.; Wang, Q.; McGehee, M.; Fan, S. H.; Cui, Y. Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays. Nano Lett. 2009, 9, 279–282.CrossRefPubMedADSGoogle Scholar
  7. [7]
    Boden, S. A.; Bagnall, D. M. Tunable reflection minima of nanostructured antireflective surfaces. Appl. Phys. Lett. 2008, 93, 133108.CrossRefADSGoogle Scholar
  8. [8]
    Huang, Y. F.; Chattopadhyay, S.; Jen, Y. J.; Peng, C. Y.; Liu, T. A.; Hsu, Y. K.; Pan, C. L.; Lo, H. C.; Hsu, C. H.; Chang, Y. H.; Lee, C. S.; Chen, K. H.; Chen, L. C. Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures. Nat. Nanotechnol. 2007, 2, 770–774.CrossRefPubMedADSGoogle Scholar
  9. [9]
    Heine, C.; Morf, R. H. Submicrometer gratings for solar energy applications. Appl. Opt. 1995, 34, 2476–2482.CrossRefADSGoogle Scholar
  10. [10]
    Kanamori, Y.; Roy, E.; Chen, Y. Antireflection sub-wavelength gratings fabricated by spin-coating replication. Microelectron. Eng. 2005, 78–79, 287–293.CrossRefGoogle Scholar
  11. [11]
    Aydin, C.; Zaslavsky, A.; Sonek, G. J.; Goldstein, J. Reduction of reflection losses in ZnGeP2 using motheye antireflection surface relief structures. Appl. Phys. Lett. 2002, 80, 2242–2244.CrossRefADSGoogle Scholar
  12. [12]
    Zhang, G. M.; Zhang, J.; Xie, G. Y.; Liu, Z. F.; Shao, H. B. Cicada wings: A stamp from nature for nanoimprint lithography. Small 2006, 2, 1440–1443.CrossRefPubMedGoogle Scholar
  13. [13]
    Sun, C. H.; Jiang, P.; Jiang, B. Broadband moth-eye antireflection coatings on silicon. Appl. Phys. Lett. 2008, 92, 061112.CrossRefADSGoogle Scholar
  14. [14]
    Chen, H. L.; Chuang, S. Y.; Lin, C. H.; Lin, Y. H. Using colloidal lithography to fabricate and optimize subwavelength pyramidal and honeycomb structures in solar cells. Opt. Express 2007, 15, 14793–14803.CrossRefPubMedADSGoogle Scholar
  15. [15]
    Lohmuller, T.; Helgert, M.; Sundermann, M.; Brunner, R.; Spatz, J. P. Biomimetic interfaces for high-performance optics in the deep-UV light range. Nano Lett. 2008, 8, 1429–1443.CrossRefPubMedADSGoogle Scholar
  16. [16]
    Wang, S.; Yu, X. Z.; Fan, H. T. Simple lithographic approach for subwavelength structure antireflection. Appl. Phys. Lett. 2007, 91, 061105.CrossRefADSGoogle Scholar
  17. [17]
    Lee, Y.; Koh, K.; Na, H.; Kim, K.; Kang, J. J.; Kim, J. Lithography-free fabrication of large area subwavelength antireflecion structure using thermally dewetted Pt/Pd alloy etch mask. Nanoscale Res. Lett. 2009, 4, 364–370.CrossRefPubMedADSGoogle Scholar
  18. [18]
    Kanamori, Y.; Hane, K.; Sai, H.; Yugami, H. 100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask. Appl. Phys. Lett. 2001, 78, 142.CrossRefADSGoogle Scholar
  19. [19]
    Ting, C. J.; Huang, M. C.; Tsai, H. Y.; Chou, C. P.; Fu, C. C. Low cost fabrication of the large-area anti-reflection films from polymer by nanoimprint/hot-embossing technology. Nanotechnology 2008, 19, 205301–205305.CrossRefADSGoogle Scholar
  20. [20]
    Rybczynski, J.; Hilgendorff, M.; Giersig, M. Nanosphere lithography—Fabrication of various periodic magnetic particle arrays using versatile nanosphere masks. In Low-Dimensional Systems: Theory, Reparation, and Some Applications (NATO Science Series II: Mathematics, Physics and Chemistry, Vol. 91). Liz-Marzán, L. M.; Giersig, M., Eds.; Springer: Berlin, 2003; pp 163–172.Google Scholar
  21. [21]
    Xu, H. B.; Lu, N.; Qi, D. P.; Hao, J. Y.; Gao, L. G.; Zhang, B.; Chi, L. F. Biomimetic antireflective Si nanopillar arrays. Small 2008, 4, 1972–1975.CrossRefPubMedGoogle Scholar
  22. [22]
    Lalanne, P.; Morris, G. M. Antireflection behavior of silicon subwavelength periodic structures for visible light. Nanotechnology 1997, 8, 53–56.CrossRefADSGoogle Scholar
  23. [23]
    Kanamori, Y.; Sasaki, M.; Hane, K. Broadband antireflection gratings fabricated upon silicon substrates. Opt. Lett. 1999, 24, 1422–1424.CrossRefPubMedADSGoogle Scholar
  24. [24]
    Chen, Q.; Hubbard, G.; Shields, P. A.; Liu, C.; Allsopp, D. W. E.; Wang, W. N.; Abott, S. Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting. Appl. Phys. Lett. 2009, 94, 263118.CrossRefADSGoogle Scholar
  25. [25]
    Chiu, C. H.; Yu, P. C.; Kuo, H. C.; Chen, C. C.; Lu, T. C.; Wang, S. C.; Hsu, S. H.; Cheng, Y. J.; Chang, Y. C. Broadband and omnidirectional antireflection employing disordered GaN nanopillars. Opt. Express 2008, 16, 8748–8754.CrossRefPubMedADSGoogle Scholar
  26. [26]
    Yu, Z. N.; Gao, H.; Wu, W.; Ge, H. X.; Chou, S. Y. Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithographyand liftoff. J. Vac. Sci. Technol. B 2003, 21, 2874–2877.CrossRefGoogle Scholar
  27. [27]
    Hadobas, K.; Kirsch, S.; Carl, A.; Acet, M.; Wassermann, E. F. Reflection properties of nanostructure-arrayed silicon surfaces. Nanotechnology 2000, 11, 161–164.CrossRefADSGoogle Scholar
  28. [28]
    Li, X.; Gao, J. P.; Xue, L. J.; Han, Y. C. Porous polymer films with gradient-refractive-index structure for broadband and omnidirectional antireflection coatings. Adv. Funct. Mater. 2010, 20, 259–265.CrossRefGoogle Scholar
  29. [29]
    Moharam, M. G.; Pommet, D. A.; Gram, E. B.; Gaylord, T. K. Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings. J. Opt. Soc. Am. A 1995, 12, 1068–1076.CrossRefADSGoogle Scholar
  30. [30]
    Cao, M. W.; Song, X. Y.; Zhai, J.; Wang, J. B.; Wang, Y. L. Fabrication of highly antireflective silicon surfaces with superhydrophobicity. J. Phys. Chem. B 2006, 110, 13072–13075.CrossRefPubMedGoogle Scholar
  31. [31]
    Li, Y. F.; Zhang, J. H.; Zhu, S. J.; Dong, H. P.; Wang, Z. H.; Sun, Z. Q.; Guo, J. R.; Yang, B. Bioinspired silicon hollow-tip arrays for high performance broadband. J. Mater. Chem. 2009, 19, 1806–1810.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Yandong Wang
    • 1
  • Nan Lu
    • 1
  • Hongbo Xu
    • 1
  • Gang Shi
    • 1
  • Miaojun Xu
    • 1
  • Xiaowen Lin
    • 2
  • Haibo Li
    • 1
  • Wentao Wang
    • 1
  • Dianpeng Qi
    • 1
  • Yanqing Lu
    • 2
  • Lifeng Chi
    • 1
    • 3
  1. 1.State Key Laboratory of Supramolecular Structure and MaterialsJilin UniversityChangchunChina
  2. 2.National Laboratory of Solid State MicrostructuresNanjing UniversityNanjingChina
  3. 3.Physikalisches Institut and Center for Nanotechnology (CeNTech)Westfälische Wilhelms-UniversitätMünsterGermany

Personalised recommendations