Nano Research

, Volume 2, Issue 12, pp 966–974 | Cite as

Zigzag zinc blende ZnS nanowires: Large scale synthesis and their structure evolution induced by electron irradiation

Open Access
Research Article

Abstract

Large scale zigzag zinc blende single crystal ZnS nanowires have been successfully synthesized during a vapor phase growth process together with a small yield of straight wurtzite single crystal ZnS nanowires. AuPd alloy nanoparticles were utilized to catalyze a vapor-solid-solid growth process of both types of ZnS nanowires, instead of the more common vapor-liquid-solid growth process. Surprisingly, the vapor-phase grown zigzag zinc blende ZnS nanowires are metastable under high-energy electron irradiation in a transmission electron microscope, with straight wurtzite nanowires being much more stable. Upon exposure to electron irradiation, a wurtzite ZnO nanoparticle layer formed on the zigzag zinc blende ZnS nanowire surface with concomitant displacement damage. Both electron inelastic scattering and surface oxidation as a result of electron-beam heating occur during this structure evolution process. When prolonged higher-voltage electron irradiation was applied, local zinc blende ZnS nanowire bodies evolved into ZnS-ZnO nanocables, and dispersed ZnS-ZnO nanoparticle networks. Random AuPd nanoparticles were observed distributed on zigzag ZnS nanowire surfaces, which might be responsible for a catalytic oxidation effect and speed up the surface oxidation-induced structure evolution.

Keywords

ZnS nanowire polymorph vapor-solid-solid growth transmission electron microscopy electron irradiation structure evolution 

References

  1. [1]
    Ahn, H. S.; Lee, K. R.; Kim, D. Y.; Han, S. W. Field emission of doped carbon nanotubes. Appl. Phys. Lett. 2006, 88, 93122.CrossRefGoogle Scholar
  2. [2]
    Jo, S. H.; Lao, J. Y.; Ren, Z. F.; Farrer, R. A.; Baldacchini, T.; Fourkas, J. T. Field-emission studies on thin films of zinc oxide nanowires. Appl. Phys. Lett. 2003, 83, 4821.CrossRefADSGoogle Scholar
  3. [3]
    Ha, B.; Seo, S. H.; Cho, J. H.; Yoon, C. S.; Yoo, J.; Yi, G. C.; Park, C. Y.; Lee, C. J. Optical and field emission properties of thin single-crystalline GaN nanowires. J. Phys. Chem. B. 2005, 109, 11095–11099.CrossRefPubMedGoogle Scholar
  4. [4]
    He, J. H.; Yang, R. S.; Chueh, Y. L.; Chou, L. J.; Chen, L. J.; Wang, Z. L. Aligned AlN nanorods with multi-tipped surfaces-growth, field-emission, and cathodoluminescence properties. Adv. Mater. 2006, 18, 650–654.CrossRefGoogle Scholar
  5. [5]
    Bredol, M.; Merikhi, J. Structure- and size-controlled ultrafine ZnS nanowires. J. Mater. Sci. 1998, 33, 471–476.CrossRefGoogle Scholar
  6. [6]
    Kar, S.; Biswas, S.; Chaudhuri, S. Catalytic growth and photoluminescence properties of ZnS nanowires. Nanotechnology 2005, 16, 737–740.CrossRefADSGoogle Scholar
  7. [7]
    Fang, X.; Ye, C.; Zhang, L.; Wang, Y.; Wu, Y. Temperature-controlled catalytic growth of ZnS nanostructures by the evaporation of ZnS nanopowders. Adv. Funct. Mater. 2005, 15, 63–68.CrossRefGoogle Scholar
  8. [8]
    Moon, H.; Nam, C.; Kim, C.; Kim, B. Synthesis and photoluminescence of zinc sulfide nanowires by simple thermal chemical vapor deposition. Mater. Res. Bull. 2006, 41, 2013–2017.CrossRefGoogle Scholar
  9. [9]
    Moore, D.; Wang, Z. L. Growth of anisotropic one-dimensional ZnS nanostructures. J. Mater. Chem. 2006, 16, 3898–3905.CrossRefGoogle Scholar
  10. [10]
    Chang, Y.; Wang, M.; Chen, X.; Ni, S.; Qiang, W. Field emission and photoluminescence characteristics of ZnS nanowires via vapor phase growth. Solid State Comm. 2007, 142, 295–298.CrossRefADSGoogle Scholar
  11. [11]
    Fan, X.; Meng, X.; Zhang, X.; Wu, S.; Lee, S. Formation of ZnS/SiO2 nanocables. Appl. Phys. Lett. 2005, 86, 173111.CrossRefADSGoogle Scholar
  12. [12]
    Jiang, Y.; Zhang, W. J.; Jie, J. S.; Meng, X. M.; Zapien, J. A.; Lee, S. Homoepitaxial growth and lasing properties of ZnS nanowire and nanoribbon arrays. Adv. Mater. 2006, 18, 1527–1532.CrossRefGoogle Scholar
  13. [13]
    Zhang, X.; Zhang, Y.; Song, Y.; Wang, Z.; Yu, D. Optical properties of ZnS nanowires synthesized via simple physical evaporation. Physica E 2005, 28, 1–6.ADSGoogle Scholar
  14. [14]
    Geng, B. Y.; Liu, X. W.; Du, Q. B.; Wei, X. W.; Zhang, L. D. Structure and optical properties of periodically twinned ZnS nanowires. Appl. Phys. Lett. 2006, 88, 163104.CrossRefADSGoogle Scholar
  15. [15]
    Yan, J.; Fang X. S.; Zhang, L.; Bando, Y.; Dierre, B.; Sekiguchi, T.; Gautam, U. K.; Golberg, D. Structure and cathodoluminescence of individual ZnS/ZnO biaxial nanobelt heterostructures. Nano Lett. 2008, 8, 2794–2799.CrossRefPubMedADSGoogle Scholar
  16. [16]
    Fang, X. S.; Bando, Y.; Liao, M. Y.; Gautam, U. K.; Zhi, C. Y.; Dierre, B.; Liu, B. D.; Zhai, T. Y.; Sekiguchi, T.; Koide, Y.; Golberg, D. Single-crystalline ZnS nanobelts as ultraviolet-light sensors. Adv. Mater. 2009, 21, 2034–2039.CrossRefGoogle Scholar
  17. [17]
    Ding, Y.; Wang, X. D.; Wang, Z. L. Phase controlled synthesis of ZnS nanobelts: Zinc blende vs. wurtzite. Chem. Phys. Lett. 2004, 398, 32–36.CrossRefADSGoogle Scholar
  18. [18]
    Pan, Y. W.; Yu, J.; Hu, Z.; Li, H. D.; Cui, Q. L.; Zou, G. T. Pressure-induced structural transitions of the zinc sulfide nano-particles with different sizes. J. Mater. Sci. Technol. 2007, 23, 193–195.Google Scholar
  19. [19]
    Meng, X. M.; Liu, J.; Jiang, Y.; Chen, W. W.; Lee, C. S.; Bello, I.; Lee, S. T. Structure- and size-controlled ultrafine ZnS nanowires. Chem. Phys. Lett. 2003, 382, 434–438.CrossRefADSGoogle Scholar
  20. [20]
    Li, Q.; Wang, C. Fabrication of Zn/ZnS nanocable heterostructures by thermal reduction/sulfidation. Appl. Phys. Lett. 2003, 82, 1398.CrossRefADSGoogle Scholar
  21. [21]
    Shi, L.; Xu, Y. M.; Li, Q.; Wu, Z. Y.; Chen, F. R.; Kai, J. J. Single crystalline ZnS nanotubes and their structural degradation under electron beam irradiation. Appl. Phys. Lett. 2007, 90, 211910.CrossRefADSGoogle Scholar
  22. [22]
    Massalski, T. B. Binary Alloy Phase Diagrams, 2nd Ed.; ASM International: Materials Park, OH, 1990; Vol. 1.Google Scholar
  23. [23]
    Buffat, P.; Borel, J. P. Size effect on the melting temperature of gold particles. Phys. Rev. A 1976, 13, 2287–2298.CrossRefADSGoogle Scholar
  24. [24]
    Campos, L. C.; Tonezzer, M.; Ferlauto, A. S.; Grillo, V.; Magalhães-Paniago, R.; Oliveira, S.; Ladeira, L. O.; Lacerda. R. G. Vapor-solid-solid growth mechanism driven by epitaxial match between solid AuZn alloy catalyst particles and ZnO nanowires at low temperatures. Adv. Mater. 2008, 20, 1499–1504.CrossRefGoogle Scholar
  25. [25]
    Wagner, R. S.; Doherty, C. J. Mechanism of branching and kinking during VLS crystal growth. J. Electrochem. Soc. 1968, 115, 93–99.CrossRefGoogle Scholar
  26. [26]
    Chen, H.; Shi, D.; Qi, J.; Jia, J.; Wang, B. The stability and electronic properties of wurtzite and zinc-blende ZnS nanowires. Phys. Lett. A 2009, 373, 371–375.CrossRefADSGoogle Scholar

Copyright information

© Tsinghua University Press and Springer Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Department of Chemical, Materials and Biomolecular Engineering & Institute of Material ScienceUniversity of ConnecticutStorrsUSA

Personalised recommendations