Nano Research

, Volume 2, Issue 12, pp 955–965 | Cite as

Enhanced antibacterial activity of bifunctional Fe3O4-Ag core-shell nanostructures

  • Bhupendra Chudasama
  • Anjana K. Vala
  • Nidhi Andhariya
  • R. V. Upadhyay
  • R. V. Mehta
Open Access
Research Article


We describe a simple one-pot thermal decomposition method for the production of a stable colloidal suspension of narrowly dispersed superparamagnetic Fe3O4-Ag core-shell nanostructures. These biocompatible nanostructures are highly toxic to microorganisms. Antimicrobial activity studies were carried out on both Gram negative (Escherichia coli and Proteus vulgaris) and Gram positive (Bacillus megaterium and Staphylococcus aureus) bacterial strains. Efforts have been made to understand the underlying molecular mechanism of such antibacterial actions. The effect of the core-shell nanostructures on Gram negative strains was found to be better than that observed for silver nanoparticles. The minimum inhibitory concentration (MIC) values of these nanostructures were found to be considerably lower than those of commercially available antibiotics. We attribute this enhanced antibacterial effect of the nanostructures to their stability as a colloid in the medium, which modulates the phosphotyrosine profile of the bacterial proteins and arrests bacterial growth. We also demonstrate that these core-shell nanostructures can be removed from the medium by means of an external magnetic field which provides a mechanism to prevent uncontrolled waste disposal of these potentially hazardous nanostructures.


Core-shell nanostructure antimicrobial activity minimum inhibitory concentration phase transfer 


  1. [1]
    Kyriacou, S. V.; Brownlow, W. J.; Xu, X. -H. N. Using nanoparticle optics assay for direct observation of the function of antimicrobial agents in single live bacterial cells. Biochemistry 2004, 43, 140–147.CrossRefPubMedGoogle Scholar
  2. [2]
    Panacek, A.; Kvitek, L.; Prucek, R., Kolar, M.; Vecerova, R.; Pizurova, N.; Sharma, V. K.; Nevecna, T.; Zboril, R. Silver colloid nanoparticles: Synthesis, characterization, and their antibacterial activity. J. Phys. Chem. B 2006, 110, 16248–16253.CrossRefPubMedGoogle Scholar
  3. [3]
    Nomiya, K.; Yoshizawa, A.; Tsukagoshi, K.; Kasuga, N. C.; Hirakawa, S.; Watanabe, J. Synthesis and structural characterization of silver(I), aluminium(III) and cobalt(II) complexes with 4-isopropyltropolone (hinokitiol) showing noteworthy biological activities. Action of silver(I)-oxygen bonding complexes on the antimicrobial activities. J. Inorg. Biochem. 2004, 98, 46–60.CrossRefPubMedGoogle Scholar
  4. [4]
    Gupta, A.; Silver, S. Molecular genetics: Silver as a biocide: Will resistance become a problem? Nat. Biotechnol. 1998, 16, 888–1098.CrossRefPubMedGoogle Scholar
  5. [5]
    Feng, Q. L.; Wu, J.; Chen, G. Q.; Cui, F. Z.; Kim, T. N.; Kim, J. O. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res. 2002, 52, 662–668.CrossRefGoogle Scholar
  6. [6]
    Holladay, R.; Moeller, W.; Mehta, D.; Brooks, J.; Roy, R.; Mortenson, M. Silver/water, silver gels and silver-based compositions; And methods for making and using the same. Patent, Pub. No. WO/2006/074117, July 13, 2006; International Application No. PCT/US2005/047699, Dec. 30, 2005.Google Scholar
  7. [7]
    Rosenman, K. D.; Moss, A.; Kon, S. Argyria: Clinical implication of exposure to silver nitrate and silver oxide. J. Occup. Med. 1979, 21, 430–435.PubMedGoogle Scholar
  8. [8]
    Cohen, S. Y.; Quentel, G.; Egasse, D.; Cadot, M.; Ingster-Moati, I.; Coscas, G. J. The dark choroid in systemic argyrosis. Retina 1993, 13, 312–316.CrossRefPubMedGoogle Scholar
  9. [9]
    Rungby, J. An experimental study on silver in the nervous system and on aspects of its general cellular toxicity. Dan. Med. Bull. 1990, 37, 442–449.PubMedGoogle Scholar
  10. [10]
    Chopra, I. The increasing use of silver-based products as antimicrobial agents: A useful development or a cause for concern? J. Antimicrob. Chemoth. 2007, 59, 587–590.CrossRefGoogle Scholar
  11. [11]
    Asharani, P. V.; Wu, Y. L.; Gong, Z. Y.; Valiyaveettil, S. Toxicity of silver nanoparticles in zebrafish models. Nanotechnology, 2008, 19, 255102.CrossRefADSGoogle Scholar
  12. [12]
    WHO. Guidelines for Drinking-Water Quality; World Health Organization: Geneva, 1998. Vol. 2, p. 338.Google Scholar
  13. [13]
    Drake, P. L.; Hazelwood, K. J. Exposure-related health effects of silver and silver compounds: A review. Ann. Occup. Hyg. 2005, 49, 575–585.CrossRefPubMedGoogle Scholar
  14. [14]
    Sun, S. H.; Zeng, H. Size-controlled synthesis of magnetite nanoparticles. J. Am. Chem. Soc. 2002, 124, 8204–8205.CrossRefPubMedGoogle Scholar
  15. [15]
    Sun, S. H.; Zeng, H.; Robinson, D. B.; Raoux, S.; Rice, P. M.; Wang, S. X.; Li, G. X. Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J. Am. Chem. Soc. 2004, 126, 273–279.CrossRefPubMedGoogle Scholar
  16. [16]
    Toshima, N.; Yonezawa, T.; Kushihashi, K. Polymerprotected palladium-platinum bimetallic clusters: Preparation, catalytic properties and structural considerations. J. Chem. Soc. Faraday Trans. 1993, 89, 2537–2543.CrossRefGoogle Scholar
  17. [17]
    Liz-Marzan, L. M.; Philipse, A. P. Stable hydrosols of metallic and bimetallic nanoparticles immobilized on imogolite fibers. J. Phys. Chem. 1995, 99, 15120–15128.CrossRefGoogle Scholar
  18. [18]
    Esumi, K.; Tano, T.; Torigoe, K.; Meguru, K. Preparation and characterization of bimetallic palladium-copper colloids by thermal decomposition of their acetate compounds in organic solvents. Chem. Mater. 1990, 2, 564–567.CrossRefGoogle Scholar
  19. [19]
    Mafune, F.; Kohnok, J.; Takeda, Y.; Kondow, T.; Sawabe, H. Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation. J. Phys. Chem. B 2000, 104, 8333–8337.CrossRefGoogle Scholar
  20. [20]
    Hiramatsu, H.; Osterloh, F. E. A simple largescale synthesis of nearly monodisperse gold and silver nanoparticles with adjustable sizes and with exchangeable surfactants. Chem. Mater. 2004, 16, 2509–2511.CrossRefGoogle Scholar
  21. [21]
    Chen, M.; Feng, Y. G.; Wang, X.; Li, T. C.; Zhang, J. Y.; Qian, D. J. Silver nanoparticles capped by oleylamine: Formation, growth, and self-organization. Langmuir 2007, 23, 5296–5304.CrossRefPubMedGoogle Scholar
  22. [22]
    Gong, P.; Li, H. M.; He, X. X.; Wang, K. M.; Hu, J. B.; Tan, W. H.; Zhang, S. C.; Yang, X. H. Preparation and antibacterial activity of Fe3O4@Ag nanoparticles. Nanotechnology 2007, 18, 285604.CrossRefADSGoogle Scholar
  23. [23]
    Kewibig, U.; Vollmer, M. Optical Properties of Metal Clusters; Springer: Berlin, 1995.Google Scholar
  24. [24]
    Mulvaney, P. Surface plasmon spectroscopy of nanosized metal particles. Langmuir 1996, 12, 788–800.CrossRefGoogle Scholar
  25. [25]
    Novak, J. P.; Feldheim, D. L. Assembly of phenylacetylenebridged silver and gold nanoparticle arrays. J. Am. Chem. Soc. 2000, 122, 3979–3980.CrossRefGoogle Scholar
  26. [26]
    Vertelov, G. K.; Krutyakov, Y. A.; Efremenkova, O. V.; Olenin, A. Y.; Lisichkin, G. V. A versatile synthesis of highly bactericidal Myramistin? stabilized silver nanoparticles. Nanotechnology 2008, 19, 355707.CrossRefGoogle Scholar
  27. [27]
    Shrivastava, S.; Bera, T.; Roy, A.; Singh, G.; Ramachandrarao, P.; Dash, D. Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology 2007, 18, 225103.CrossRefADSGoogle Scholar
  28. [28]
    Mijakovic, I.; Petranovic, D.; Bottini, N.; Deutscher, J.; Jensen, P. R. Protein-tyrosine phosphorylation in Bacillus subtilis. J. Mol. Microb. Biotech. 2005, 9, 189–197.CrossRefGoogle Scholar
  29. [29]
    Nover, L.; Scharf, K.D.; Neumann, D. Formation of cytoplasmic heat shock granules in tomato cell cultures and leaves. Mol. Cell Biol. 1983, 3, 1648–1655.PubMedGoogle Scholar
  30. [30]
    Morones, J. R.; Elecheguerra, J. L.; Camacho, A.; Holt, K.; Kouri, J. B.; Ramirez, J. T.; Yacaman, M. J. The bactericidal effect of silver nanoparticles. Nanotechnology 2005, 16, 2346–2353.CrossRefADSGoogle Scholar
  31. [31]
    Raffi, M.; Hussain, F.; Bhatti, T. M.; Akhter, J. I.; Hameed, A.; Hasan, M. M. Antibacterial characterization of silver nanoparticles against E. coli ATCC-15224. J. Mater. Sci. Technol. 2008, 24, 192–196.Google Scholar
  32. [32]
    Melaiye, A.; Sun, Z. H.; Hindi, K.; Milsted, A.; Ely, D.; Reneker, D. H.; Tessier, C. A.; Youngs, W. J. Silver(I)-imidazole cyclophane gem-diol complexes encapsulated by electrospun tecophilic nanofibers: Formation of nanosilver particles and antimicrobial activity. J. Am. Chem. Soc. 2005, 127, 2285–2291.CrossRefPubMedGoogle Scholar
  33. [33]
    Lee, D.; Cohen, R. E.; Rubner, M. F. Antibacterial properties of Ag nanoparticle loaded multilayers and formation of magnetically directed antibacterial microparticles. Langmuir 2005, 21, 9651–9659.CrossRefPubMedGoogle Scholar

Copyright information

© Tsinghua University Press and Springer Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Department of Applied PhysicsS.V. National Institute of TechnologySuratIndia
  2. 2.Department of PhysicsBhavnagar UniversityBhavnagarIndia
  3. 3.P.D. Patel Institute of Applied SciencesCharotar University of Science and TechnologyChangaIndia

Personalised recommendations