Nano Research

, Volume 2, Issue 12, pp 938–944 | Cite as

Nanopumping molecules via a carbon nanotube

  • Min Chen
  • Ji Zang
  • Dingquan Xiao
  • C. Zhang
  • Feng Liu
Open Access
Research Article


We demonstrate the feasibility of using a carbon nanotube to nanopump molecules. Molecular dynamics simulations show that the transport and ejection of a C20 molecule via a single-walled carbon nanotube (SWNT) can be achieved by a sustained mechanical actuation driven by two oscillating tips. The optimal condition for nanopumping is found when the tip oscillation frequency and magnitude correlate to form quasi steady-state mechanical wave propagation in the SWNT, so that the energy transfer process is optimal leading to maximal molecular translational motion and minimal rotational motion. Our finding provides a potentially useful mechanism for using an SWNT as a vehicle to deliver large drug molecules.


Carbon nanotube nanopumping drug delivery MD simualtion 

Supplementary material

12274_2009_9096_MOESM1_ESM.pdf (101 kb)
Supplementary material, approximately 101 KB.


  1. [1]
    Martin, C. R.: Kohli, P. The emerging field of nanotube biotechnology. Nat. Rev. Drug Discov. 2003, 2, 29–37.CrossRefPubMedGoogle Scholar
  2. [2]
    Kam, N. W. S.: Dai, H. J. Carbon nanotubes as intracellular protein transporters: Generality and biological functionality. J. Am. Chem. Soc. 2005, 127, 6021–6026.CrossRefPubMedGoogle Scholar
  3. [3]
    Svensson, K.: Olin, H.: Olsson, E. Nanopipettes for metal transport. Phys. Rev. Lett. 2004, 93, 145901.CrossRefPubMedADSGoogle Scholar
  4. [4]
    Wu, J.: Zang, J.: Larade, B.: Guo, H.: Gong, X. G.: Liu, F. Computational design of carbon nanotube electromechanical pressure sensors. Phys. Rev. B 2004, 69, 153406.CrossRefADSGoogle Scholar
  5. [5]
    Liu, F. In situ pressure monitor and associated methods. Patent, Pub. No. WO/2008/127797, Oct. 23,2008; International Application No. PCT/US2008/055525, Feb. 29, 2008.Google Scholar
  6. [6]
    Pantarotto, D.: Briand, J. -P.: Prato, M.: Bianco, A. Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem. Commun. 2004, 1, 16–17.CrossRefGoogle Scholar
  7. [7]
    Cai, D.: Mataraza, J. M.: Qin, Z. -H.: Huang, Z.: Huang, J.: Chiles, T. C.: Carnahan, D.: Kempa, K.: Ren, Z. Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing. Nat. Methods 2005, 2, 449–454.CrossRefPubMedGoogle Scholar
  8. [8]
    Smith, B. W.: Monthioux, M.: Luzzi, D. E. Encapsulated C-60 in carbon nanotubes. Nature 1998, 396, 323–324.CrossRefADSGoogle Scholar
  9. [9]
    Hummer, G.: Rasalah, J. C.: Noworyta, J. P. Water conduction through the hydrophobic channel of a carbon nanotube. Nature 2001, 414, 188–190.CrossRefPubMedADSGoogle Scholar
  10. [10]
    Gao, H.: Kong, Y.: Cui, D.: Ozkan, C. S. Spontaneous insertion of DNA oligonucleotides into carbon nanotubes. Nano. Lett. 2003, 3, 471–473.CrossRefADSGoogle Scholar
  11. [11]
    Longhurst, M. J.: Quirke, N. Temperature-driven pumping of fluid through single-walled carbon nanotubes. Nano. Lett. 2007, 7, 3324–3328.CrossRefPubMedADSGoogle Scholar
  12. [12]
    Dai, Y.: Tang, C.: Guo, W. Simulation studies of a “nanogun” based on carbon nanotubes. Nano Res. 2008, 1, 176.CrossRefGoogle Scholar
  13. [13]
    Král, P.: Tománek, D. Laser-driven atomic pump. Phys. Rev. Lett. 1999, 82, 5373–5376.CrossRefADSGoogle Scholar
  14. [14]
    Insepov, Z.: Wolf, D.: Hassanein, A. Nanopumping using carbon nanotubes. Nano. Lett. 2006, 6, 1893.CrossRefPubMedADSGoogle Scholar
  15. [15]
    Wang, Q. Atomic transportation via carbon nanotubes. Nano. Lett. 2009, 9, 245–249.CrossRefPubMedADSGoogle Scholar
  16. [16]
    Ulbricht, H.: Moos, G.: Hertel, T. Interaction of C60 with carbon nanotubes and graphite. Phys. Rev. Lett. 2003, 90, 095501.CrossRefPubMedADSGoogle Scholar
  17. [17]
    Chang, T. Dominoes in carbon nanotubes. Phys. Rev. Lett. 2008, 101, 175501.CrossRefPubMedADSGoogle Scholar
  18. [18]
    Chopra, N. G.: Benedict, L. X.: Crespi, V. H.: Cohen, M. L.: Louie, S. G.: Zettl, A. Fully collapsed carbon nanotubes. Nature 1995, 377, 135–138.CrossRefADSGoogle Scholar
  19. [19]
    Chen, M.: Zang, J.: Xiao, D. Q.: Liu, F. Mechanical wave propagation in carbon nanotubes driven by an oscillating tip actuator. J. Appl. Phys. 2009, 105, 026102.CrossRefADSGoogle Scholar
  20. [20]
    Okada, S.: Saito, S.: Oshiyama, A. Energetics and electronic structures of encapsulated C-60 in a carbon nanotube. Phys. Rev. Lett. 2001, 86, 3835–3838.CrossRefPubMedADSGoogle Scholar
  21. [21]
    Tersoff, J. Sample-dependent resolution in scanning tunneling microscopy. Phys. Rev. B 1989, 39, 1052–1057.CrossRefADSGoogle Scholar
  22. [22]
    Rappé, A. K.: Casewit, C. J.: Colwell, K. S.: Goddard III, W. A.: Skiff, W. M. UFF, a full periodic-table forcefield for molecular mechanics and molecular-dynamics simulations. J. Am. Chem. Soc. 1992, 114, 10024–10035.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer Berlin Heidelberg 2009

Authors and Affiliations

  • Min Chen
    • 1
    • 2
    • 3
  • Ji Zang
    • 3
  • Dingquan Xiao
    • 1
  • C. Zhang
    • 4
  • Feng Liu
    • 3
  1. 1.Department of Materials Science and EngineeringSichuan UniversityChengdu, SichuanChina
  2. 2.Department of Optoelectronic TechnologyChengdu University of Information TechnologyChengdu, SichuanChina
  3. 3.Department of Materials Science and EngineeringUniversity of UtahSalt Lake CityUSA
  4. 4.School of Engineering PhysicsUniversity of WollongongWollongongAustralia

Personalised recommendations