Nano Research

, 2:829 | Cite as

Challenges and prospects of nanopillar-based solar cells

  • Zhiyong Fan
  • Daniel J. Ruebusch
  • Asghar A. Rathore
  • Rehan Kapadia
  • Onur Ergen
  • Paul W. Leu
  • Ali Javey
Open Access
Review Article


Materials and device architecture innovations are essential for further enhancing the performance of solar cells while potentially enabling their large-scale integration as a viable source of alternative energy. In this regard, tremendous research has been devoted in recent years with continuous progress in the field. In this article, we review the recent advancements in nanopillar-based photovoltaics while discussing the future challenges and prospects. Nanopillar arrays provide unique advantages over thin films in the areas of optical properties and carrier collection, arising from their three-dimensional geometry. The choice of the material system, however, is essential in order to gain the advantage of the large surface/interface area associated with nanopillars with the constraints different from those of the thin film devices.


Nanopillar-based photovoltaics solar cells nanowires (NWs) 


  1. [1]
    Lu, W.; Lieber, C. M. Nanoelectronics from the bottom up. Nat. Mater. 2007, 6, 841–850.CrossRefPubMedADSGoogle Scholar
  2. [2]
    Javey, A.; Nam, S.; Friedman, R. S.; Yan, H.; Lieber, C. M. Layer-by-layer assembly of nanowires for three-dimensional, multifunctional electronics. Nano Lett. 2007, 7, 773–777.CrossRefPubMedADSGoogle Scholar
  3. [3]
    Xiang, J.; Lu, W.; Hu, Y. J.; Wu, Y.; Yan, H.; Lieber, C. M. Ge/Si nanowire heterostructures as high-performance field-effect transistors. Nature 2006, 441, 489–493.CrossRefPubMedADSGoogle Scholar
  4. [4]
    Wang, D.; Dai, H. Germanium nanowires: From synthesis, surface chemistry, and assembly to devices. Appl. Phys. A-Mater. 2006, 85, 217–225.CrossRefADSGoogle Scholar
  5. [5]
    Javey, A. The 2008 Kavli Prize in Nanoscience: Carbon nanotubes. ACS Nano 2008, 2, 1329–1335.CrossRefPubMedGoogle Scholar
  6. [6]
    Thelander, C.; Rehnstedt, C.; Froberg, L. E.; Lind, E.; Martensson, T.; Caroff, P.; Lowgren, T.; Ohlsson, B. J.; Samuelson, L.; Wernersson, L. E. Development of a vertical wrap-gated InAs FET. IEEE T. Electron Dev. 2008, 11, 3030–3036.CrossRefADSGoogle Scholar
  7. [7]
    Ford, A. C.; Ho, J. C.; Chueh, Y. L.; Tseng, Y. C.; Fan, Z. Y.; Guo, J.; Bokor, J.; Javey, A. Diameter-dependent electron mobility of InAs nanowires. Nano Lett. 2009, 9, 360–365.CrossRefPubMedADSGoogle Scholar
  8. [8]
    Zhong, Z. H.; Qian, F.; Wang, D. L.; Lieber, C. M. Synthesis of p-type gallium nitride nanowires for electronic and photonic nanodevices. Nano Lett. 2003, 3, 343 346.CrossRefGoogle Scholar
  9. [9]
    Qian, F.; Gradecak, S.; Li, Y.; Wen, C. Y.; Lieber, C. M. Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. Nano Lett. 2005, 5, 2287–2291.CrossRefPubMedADSGoogle Scholar
  10. [10]
    Fan, Z. Y.; Chang, P. C.; Lu, J. G.; Walter, E. C.; Penner, R. M.; Lin, C. H.; Lee, H. P. Photoluminescence and polarized photodetection of single ZnO nanowires. Appl. Phys. Lett. 2004, 85, 6128–6130.CrossRefADSGoogle Scholar
  11. [11]
    Fan, Z. Y.; Wang, D. W.; Chang, P. C.; Tseng, W. Y.; Lu, J. G. ZnO nanowire field-effect transistor and oxygen sensing property. Appl. Phys. Lett. 2004, 85, 5923–5925.CrossRefADSGoogle Scholar
  12. [12]
    Fan, Z. Y.; Lu, J. G. Gate-refreshable nanowire chemical sensors. Appl. Phys. Lett. 2005, 86, 123–510.Google Scholar
  13. [13]
    Hahm, J.; Lieber, C. M. Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Lett. 2004, 4, 51–54.CrossRefADSGoogle Scholar
  14. [14]
    Zhang, D. H.; Liu, Z. Q.; Li, C.; Tang, T.; Liu, X. L.; Han, S.; Lei, B.; Zhou, C. W. Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices. Nano Lett. 2004, 4, 1919–1924.CrossRefADSGoogle Scholar
  15. [15]
    Fan, Z. Y.; Ho, J. C.; Jacobson, Z. A.; Razavi, H.; Javey, A. Large-scale, heterogeneous integration of nanowire arrays for image sensor circuitry. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 11066–11070.CrossRefPubMedADSGoogle Scholar
  16. [16]
    Chen, P.; Shen, G.; Zhou, C. Chemical sensors and electronic noses based on 1-D metal oxide nanostructures. IEEE T. Nanotechnol. 2008, 7, 668–682.CrossRefADSGoogle Scholar
  17. [17]
    Hochbaum, A. I.; Chen, R. K.; Delgado, R. D.; Liang, W. J.; Garnett, E. C.; Najarian, M.; Majumdar, A.; Yang, P. D. Enhanced thermoelectric performance of rough silicon nanowires. Nature 2008, 451, 163–167.CrossRefPubMedADSGoogle Scholar
  18. [18]
    Yan, Q.; Cheng, H.; Zhou, W.; Hng, H. H.; Yin, F.; Boey, F. Y. C.; Ma, J. A simple chemical approach for PbTe nanowires with enhanced thermoelectric properties. Chem. Mat. 2008, 20, 6298–6300.CrossRefGoogle Scholar
  19. [19]
    Wang, Z. L.; Song, J. H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242 246.PubMedGoogle Scholar
  20. [20]
    Fan, Z. Y.; Razavi, H.; Do, J. W.; Moriwaki, A.; Ergen, O.; Chueh, Y. L.; Leu, P. W.; Ho, J. C.; Takahashi, T.; Reichertz, L. A.; Neale, S.; Yu, K.; Wu, M.; Ager, J. W.; Javey, A. Three-dimensional nanopillar-array photovoltaics on lowcost and flexible substrates. Nat. Mater. 2009, 8, 648–653.CrossRefPubMedADSGoogle Scholar
  21. [21]
    Czaban, J. A.; Thompson, D. A.; LaPierre, R. R. GaAs core-shell nanowires for photovoltaic applications. Nano Lett. 2009, 9, 148–154.CrossRefPubMedADSGoogle Scholar
  22. [22]
    Garnett, E. C.; Yang, P. D. Silicon nanowire radial p-n junction solar cells. J. Am. Chem. Soc. 2008, 130, 9224–9225.CrossRefPubMedGoogle Scholar
  23. [23]
    Kelzenberg, M. D.; Turner-Evans, D. B.; Kayes, B. M.; Filler, M. A.; Putnam, M. C.; Lewis, N. S.; Atwater, H. A. Photovoltaic measurements in single-nanowire silicon solar cells. Nano Lett. 2008, 8, 710–714.CrossRefPubMedADSGoogle Scholar
  24. [24]
    Martinson, A. B. F.; Elam, J. W.; Liu, J.; Pellin, M. J.; Marks, T. J.; Hupp, J. T. Radial electron collection in dyesensitized solar cells. Nano Lett. 2008, 8, 2862–2866.CrossRefPubMedADSGoogle Scholar
  25. [25]
    Stelzner, T.; Pietsch, M.; Andra, G.; Falk, F.; Ose, E.; Christiansen, S. Silicon nanowire-based solar cells. Nanotechnology 2008, 19, 295–203.CrossRefGoogle Scholar
  26. [26]
    Tian, B. Z.; Zheng, X. L.; Kempa, T. J.; Fang, Y.; Yu, N. F.; Yu, G. H.; Huang, J. L.; Lieber, C. M. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 2007, 885–889.Google Scholar
  27. [27]
    Tsakalakos, L.; Balch, J.; Fronheiser, J.; Korevaar, B. A.; Sulima, O.; Rand, J. Silicon nanowire solar cells. Appl. Phys. Lett. 2007, 91, 233117.CrossRefADSGoogle Scholar
  28. [28]
    Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P. D. Nanowire dye-sensitized solar cells. Nat. Mater. 2005, 4, 455–459.CrossRefPubMedADSGoogle Scholar
  29. [29]
    Song, M. Y.; Ahn, Y. R.; Jo, S. M.; Kim, D. Y.; Ahn, J. P. TiO2 single-crystalline nanorod electrode for quasi-solidstate dye-sensitized solar cells. Appl. Phys. Lett. 2005, 87, 113113.CrossRefADSGoogle Scholar
  30. [30]
    Colombo, C.; Heiss, M.; Gratzel, M.; Morral, A. F. I. Gallium arsenide p-i-n radial structures for photovoltaic applications. Appl. Phys. Lett. 2009, 94, 173108.CrossRefADSGoogle Scholar
  31. [31]
    Kempa, T. J.; Tian, B.; Kim, D. R.; Hu, J.; Zheng, X.; Lieber, C. M. Single and tandem axial p-i-n nanowire photovoltaic devices. Nano Lett. 2008, 8, 3456–3460.CrossRefPubMedADSGoogle Scholar
  32. [32]
    Tang, Y. B.; Chen, Z. H.; Song, H. S.; Lee, C. S.; Cong, H. T.; Cheng, H. M.; Zhang, W. J.; Bello, I.; Lee, S. T. Vertically aligned p-type single-crystalline GaN nanorod arrays on n-type Si for heterojunction photovoltaic cells. Nano Lett. 2008, 8, 4191–4195.CrossRefPubMedADSGoogle Scholar
  33. [33]
    Greene, L. E.; Law, M.; Yuhas, B. D.; Yang, P. D. ZnO-TiO2 core-shell nanorod/P3HT solar cells. J. Phys. Chem. C 2007, 111, 18451–18456.CrossRefGoogle Scholar
  34. [34]
    Peng, K. Q.; Xu, Y.; Wu, Y.; Yan, Y. J.; Lee, S. T.; Zhu, J. Aligned single-crystalline Si nanowire arrays for photovoltaic applications. Small 2005, 1, 1062–1067.CrossRefPubMedGoogle Scholar
  35. [35]
    Muskens, O. L.; Rivas, J. G.; Algra, R. E.; Bakkers, E. P. A. M.; Lagendijk, A. Design of light scattering in nanowire materials for photovoltaic applications. Nano Lett. 2008, 8, 2638–2642.CrossRefPubMedADSGoogle Scholar
  36. [36]
    Zhu, J.; Yu, Z. F.; Burkhard, G. F.; Hsu, C. M.; Connor, S. T.; Xu, Y. Q.; Wang, Q.; McGehee, M.; Fan, S. H.; Cui, Y. Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays. Nano Lett. 2009, 9, 279–282.CrossRefPubMedADSGoogle Scholar
  37. [37]
    Stiebig, H.; Senoussaoui, N.; Zahren, C.; Haase, C.; Muller, J. Silicon thin-film solar cells with rectangularshaped grating couplers. Prog. Photovoltaics 2006, 14, 13–24.CrossRefGoogle Scholar
  38. [38]
    Fahrenbruch, A. L.; Bube, R. H. In Fundamentals of Solar Cells: Photovoltaic Solar Energy Conversion. Academic Press: New York, 1983.Google Scholar
  39. [39]
    Kayes, B. M.; Atwater, H. A.; Lewis, N. S. Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells. J. Appl. Phys. 2005, 97, 114302.CrossRefADSGoogle Scholar
  40. [40]
    Kosyachenko, L. A.; Savchuk, A. I.; Grushko, E. V. Dependence of efficiency of thin-film CdS/CdTe solar cell on parameters of absorber layer and barrier structure. Thin Solid Films 2009, 517, 2386 2391.CrossRefGoogle Scholar
  41. [41]
    van Nieuwenhuysen, K.; Duerinckx, F.; Kuzma, I.; Payo, M. R.; Beaucarne, G.; Poortmans, J. Epitaxially grown emitters for thin film crystalline silicon solar cells. Thin Solid Films 2008, 517, 383–384.CrossRefADSGoogle Scholar
  42. [42]
    Marsillac, S.; Parikh, V. Y.; Compaan, A. D. Ultra-thin bifacial CdTe solar cell. Sol. Energ. Mat. Sol. C. 2007, 91, 1398–1402.CrossRefGoogle Scholar
  43. [43]
    Romeo, A.; Khrypunov, G.; Galassini, S.; Zogg, H.; Tiwari, A. N. Bifacial configurations for CdTe solar cells. Sol. Energ. Mat. Sol. C. 2007, 91, 1388–1391.CrossRefGoogle Scholar
  44. [44]
    Beaucarne, G.; Duerinckx, F.; Kuzma, I.; van Nieuwenhuysen, K.; Kim, H. J.; Poortmans, J. Epitaxial thin-film Si solar cells. Thin Solid Films 2006, 533–542.Google Scholar
  45. [45]
    Schermer, J. J.; Mulder, P.; Bauhuis, G. J.; Larsen, P. K.; Oomen, G.; Bongers, E. Thin-film GaAs epitaxial life-off solar cells for space applications. Prog. Photovoltaics 2005, 13, 587–596.CrossRefGoogle Scholar
  46. [46]
    Bridge, C. J.; Dawson, P.; Buckle, P. D.; Ozsan, M. E. Photoluminescence spectroscopy and decay time measurements of polycrystalline thin film CdTe. J. Appl. Phys. 2000, 88, 6451–6456.CrossRefADSGoogle Scholar
  47. [47]
    Gunawan, O.; Guha, S. Characteristics of vapor-liquid-solid grown silicon nanowire solar cells. Sol. Energ. Mat. Sol. C. 2009, 93, 1388–1393.CrossRefGoogle Scholar
  48. [48]
    Anandan, S.; Wen, X. G.; Yang, S. H. Room temperature growth of CuO nanorod arrays on copper and their application as a cathode in dye-sensitized solar cells. Mater. Chem. Phys. 2005, 93, 35–40.CrossRefGoogle Scholar
  49. [49]
    Jiu, J. T.; Wang, F. M.; Isoda, S.; Adachi, M. Highly efficient dye-sensitized solar cells based on single crystalline TiO2 nanorod film. Chem. Lett. 2005, 34, 1506–1507.CrossRefGoogle Scholar
  50. [50]
    Adachi, M.; Murata, Y.; Takao, J.; Jiu, J. T.; Sakamoto, M.; Wang, F. M. Highly efficient dyesensitized solar cells with a titania thin-film electrode composed of a network structure of singlecrystal-like TiO2 nanowires made by the “oriented attachment” mechanism. J. Am. Chem. Soc. 2004, 126, 14943–14949.CrossRefPubMedGoogle Scholar
  51. [51]
    Sharma, A. K.; Agarwal, S. K.; Singh, S. N. Determination of front surface recombination velocity of silicon solar cells using the short-wavelength spectral response. Sol. Energ. Mat. Sol. C. 2007, 91, 1515–1520.CrossRefGoogle Scholar
  52. [52]
    Sabbah, A. J.; Riffe, D. M. Measurement of silicon surface recombination velocity using ultrafast pumpprobe reflectivity in the near infrared. J. Appl. Phys. 2000, 88, 6954–6956.CrossRefADSGoogle Scholar
  53. [53]
    Rowe, M. W.; Liu, H. L.; Williams, G. P.; Williams, R. T. Picosecond photoelectron-spectroscopy of excited-states at Si(111) √3 × √3R30°-B, Si(111)7×7, Si(100)2×1, and laser-annealed Si(111)1×1 surfaces. Phys. Rev. B 1993, 47, 2048–2064.CrossRefADSGoogle Scholar
  54. [54]
    Passlack, M.; Hong, M.; Mannaerts, J. P.; Kwo, J. R.; Tu, L. W. Recombination velocity at oxide-GaAs interfaces fabricated by in situ molecular beam epitaxy. Appl. Phys. Lett. 1996, 68, 3605–3607.CrossRefADSGoogle Scholar
  55. [55]
    Jastrzebski, L.; Lagowski, J.; Gatos, H. C. Application of scanning electron-microscopy to determination of surface recombination velocity: GaAs. Appl. Phys. Lett. 1975, 27, 537–539.CrossRefADSGoogle Scholar
  56. [56]
    Rosenwaks, Y.; Burstein, L.; Shapira, Y.; Huppert, D. Effects of reactive versus unreactive metals on the surface recombination velocity at Cds and CdSe(1120) interfaces. Appl. Phys. Lett. 1990, 57, 458–460.CrossRefADSGoogle Scholar
  57. [57]
    Delgadillo, I.; Vargas, M.; CruzOrea, A.; AlvaradoGil, J. J.; Baquero, R.; SanchezSinencio, F.; Vargas, H. Photoacoustic CdTe surface characterization. Appl. Phys. B-Lasers O. 1997, 64, 97–101.CrossRefADSGoogle Scholar
  58. [58]
    Gottschalch, V.; Wagner, G.; Bauer, J.; Paetzelt, H.; Shirnow, M. VLS growth of GaN nanowires on various substrates. J. Cryst. Growth 2008, 310, 5123–5128.CrossRefADSGoogle Scholar
  59. [59]
    Chen, Y. Q.; Cui, X. F.; Zhang, K.; Pan, D. Y.; Zhang, S. Y.; Wang, B.; Hou, J. G. Bulk-quantity synthesis and self-catalytic VLS growth of SnO2 nanowires by lower-temperature evaporation. Chem. Phys. Lett. 2003, 369, 16–20.CrossRefADSGoogle Scholar
  60. [60]
    Zhang, X.; Lew, K.; Nimmatoori, P.; Redwing, J. M.; Dickey, E. C. Diameter-dependent composition of vapor-liquid-solid grown Si1-xGex nanowires. Nano Lett. 2007, 7, 3241–3245.CrossRefPubMedADSGoogle Scholar
  61. [61]
    Li, S. Y.; Lin, P.; Lee, C. Y.; Tseng, T. Y. Field emission and photofluorescent characteristics of zinc oxide nanowires synthesized by a metal catalyzed vapor-liquid-solid process. J. Appl. Phys. 2004, 95, 3711–3716.CrossRefADSGoogle Scholar
  62. [62]
    Wu, Y. Y.; Yang, P. D. Direct observation of vapor-liquid-solid nanowire growth. J. Am. Chem. Soc. 2001, 123, 3165–3166.CrossRefGoogle Scholar
  63. [63]
    Lauhon, L. J.; Gudiksen, M. S.; Lieber, C. M. Semiconductor nanowire heterostructures. Philos. T. R. Soc. A 2004, 362, 1247–1260.CrossRefADSGoogle Scholar
  64. [64]
    Lauhon, L. J.; Gudiksen, M. S.; Wang, C. L.; Lieber, C. M. Epitaxial core-shell and coremultishell nanowire heterostructures. Nature 2002, 420, 57–61.CrossRefPubMedADSGoogle Scholar
  65. [65]
    Durgun, E.; Akman, N.; Ataca, C.; Ciraci, S. Atomic and electronic structures of doped silicon nanowires: A first-principles study. Phys. Rev. B 2007, 76, 245323.CrossRefADSGoogle Scholar
  66. [66]
    Nazeeruddin, M. K.; Pechy, P.; Renouard, T.; Zakeeruddin, S. M.; Humphry-Baker, R.; Comte, P.; Liska, P.; Cevey, L.; Costa, E.; Shklover, V.; Spiccia, L.; Deacon, G. B.; Bignozzi, C. A.; Gratzel, M. Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells. J. Am. Chem. Soc. 2001, 123, 1613 1624.Google Scholar
  67. [67]
    Wang, P.; Zakeeruddin, S. M.; Moser, J. E.; Nazeeruddin, M. K.; Sekiguchii, T.; Gratzel, M. A stable quasi-solidstate dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte. Nat. Mater. 2003, 2, 402–407.CrossRefPubMedADSGoogle Scholar
  68. [68]
    Rensmo, H.; Keis, K.; Lindstrom, H.; Sodergren, S.; Solbrand, A.; Hagfeldt, A.; Lindquist, S. E.; Wang, L. N.; Muhammed, M. High light-to-energy conversion efficiencies for solar cells based on nanostructured ZnO electrodes. J. Phys. Chem. B 1997, 101, 2598–2601.CrossRefGoogle Scholar
  69. [69]
    Tennakone, K.; Kumara, G. R. R. A.; Kottegoda, I. R. M.; Perera, V. P. S. An efficient dyesensitized photoelectrochemical solar cell made from oxides of tin and zinc. Chem. Commun. 1999, 15–16.Google Scholar
  70. [70]
    Keis, K.; Magnusson, E.; Lindstrom, H.; Lindquist, S. E.; Hagfeldt, A. A 5% efficient photo electrochemical solar cell based on nanostructured ZnO electrodes. Sol. Energ. Mat. Sol. C. 2002, 73, 51–58.CrossRefGoogle Scholar
  71. [71]
    Gregg, B. A. Excitonic solar cells. J. Phys. Chem. B 2003, 107, 4688–4698.CrossRefGoogle Scholar
  72. [72]
    Hara, K.; Wang, Z. S.; Sato, T.; Furube, A.; Katoh, R.; Sugihara, H.; Dan-Oh, Y.; Kasada, C.; Shinpo, A.; Suga, S. Oligothiophene-containing coumarin dyes for efficient dye-sensitized solar cells. J. Phys. Chem. B 2005, 109, 15476–15482.CrossRefPubMedGoogle Scholar
  73. [73]
    Horiuchi, T.; Miura, H.; Sumioka, K.; Uchida, S. High efficiency of dye-sensitized solar cells based on metal-free indoline dyes. J. Am. Chem. Soc. 2004, 126, 12218–12219.CrossRefPubMedGoogle Scholar
  74. [74]
    Altobello, S.; Argazzi, R.; Caramori, S.; Contado, C.; Da Fre, S.; Rubino, P.; Chone, C.; Larramona, G.; Bignozzi, C. A. Sensitization of nanocrystalline TiO2 with black absorbers based on Os and Ru polypyridine complexes. J. Am. Chem. Soc. 2005, 127, 15342–15343.CrossRefPubMedGoogle Scholar
  75. [75]
    Robertson, N. Optimizing dyes for dye-sensitized solar cells. Angew. Chem. Int. Edit. 2006, 45, 2338–2345.CrossRefGoogle Scholar
  76. [76]
    Zukalova, M.; Zukal, A.; Kavan, L.; Nazeeruddin, M. K.; Liska, P.; Gratzel, M. Organized mesoporous TiO2 films exhibiting greatly enhanced performance in dyesensitized solar cells. Nano Lett. 2005, 5, 1789–1792.CrossRefPubMedADSGoogle Scholar
  77. [77]
    Green, A. N. M.; Palomares, E.; Haque, S. A.; Kroon, J. M.; Durrant, J. R. Charge transport versus recombination in dye-sensitized solar cells employing nanocrystalline TiO2 and SnO2 films. J. Phys. Chem. B 2005, 109, 12525–12533.CrossRefPubMedGoogle Scholar
  78. [78]
    Fisher, A. C.; Peter, L. M.; Ponomarev, E. A.; Walker, A. B.; Wijayantha, K. G. U. Intensity dependence of the back reaction and transport of electrons in dye-sensitized nanacrystalline TiO2 solar cells. J. Phys. Chem. B 2000, 104, 949 958.Google Scholar
  79. [79]
    Oekermann, T.; Zhang, D.; Yoshida, T.; Minoura, H. Electron transport and back reaction in nanocrystalline TiO2 films prepared by hydrothermal crystallization. J. Phys. Chem. B 2004, 108, 2227–2235.CrossRefGoogle Scholar
  80. [80]
    Nelson, J. Continuous-time random-walk model of electron transport in nanocrystalline TiO2 electrodes. Phys. Rev. B 1999, 59, 15374–15380.CrossRefADSGoogle Scholar
  81. [81]
    van de Lagemaat, J.; Frank, A. J. Nonthermalized electron transport in dye-sensitized nanocrystalline TiO2 films: Transient photocurrent and random-walk modeling studies. J. Phys. Chem. B 2001, 105, 11194–11205.CrossRefGoogle Scholar
  82. [82]
    Kopidakis, N.; Benkstein, K. D.; van de Lagemaat, J.; Frank, A. J. Transport-limited recombination of photocarriers in dye-sensitized nanocrystalline TiO2 solar cells. J. Phys. Chem. B 2003, 107, 11307–11315.CrossRefGoogle Scholar
  83. [83]
    Zaban, A.; Chen, S. G.; Chappel, S.; Gregg, B. A. Bilayer nanoporous electrodes for dye sensitized solar cells. Chem. Commun. 2000, 2231–2232.Google Scholar
  84. [84]
    Tennakone, K.; Bandara, J.; Bandaranayake, P. K. M.; Kumara, G. R. A.; Konno, A. Enhanced efficiency of a dye-sensitized solar cell made from MgO-coated nanocrystalline SnO2. Jpn. J. Appl. Phys. 2001, 40, L732 L734.CrossRefGoogle Scholar
  85. [85]
    Palomares, E.; Clifford, J. N.; Haque, S. A.; Lutz, T.; Durrant, J. R. Control of charge recombination dynamics in dye sensitized solar cells by the use of conformally deposited metal oxide blocking layers. J. Am. Chem. Soc. 2003, 125, 475–482.CrossRefPubMedGoogle Scholar
  86. [86]
    Diamant, Y.; Chappel, S.; Chen, S. G.; Melamed, O.; Zaban, A. Core-shell nanoporous electrode for dye sensitized solar cells: The effect of shell characteristics on the electronic properties of the electrode. Coord. Chem. Rev. 2004, 248, 1271–1276.CrossRefGoogle Scholar
  87. [87]
    Bandaranayake, K. M. P.; Indika Senevirathna, M. K. I.; Prasad Weligamuwa, P. M. G. M. P.; Tennakone, K. Dyesensitized solar cells made from nanocrystalline TiO2 films coated with outer layers of different oxide materials. Coord. Chem. Rev. 2004, 248, 1277–1281.CrossRefGoogle Scholar
  88. [88]
    Law, M.; Greene, L. E.; Radenovic, A.; Kuykendall, T.; Liphardt, J.; Yang, P. D. ZnO-Al2O3 and ZnO-TiO2 coreshell nanowire dye-sensitized solar cells. J. Phys. Chem. B 2006, 110, 22652–22663.CrossRefPubMedGoogle Scholar
  89. [89]
    Mikulskas, I.; Juodkazis, S.; Tomasiunas, R.; Dumas, J. G. Aluminum oxide photonic crystals grown by a new hybrid method. Adv. Mater. 2001, 13, 1574–1577.CrossRefGoogle Scholar
  90. [90]
    Fan, Z. Y.; Dutta, D.; Chien, C. J.; Chen, H. Y.; Brown, E. C.; Chang, P. C.; Lu, J. G. Electrical and photoconductive properties of vertical ZnO nanowires in high density arrays. Appl. Phys. Lett. 2006, 89, 213110.CrossRefADSGoogle Scholar
  91. [91]
    Nielsch, K.; Muller, F.; Li, A. P.; Gosele, U. Uniform nickel deposition into ordered alumina pores by pulsed electrodeposition. Adv. Mater. 2000, 12, 582–586.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer Berlin Heidelberg 2009

Authors and Affiliations

  • Zhiyong Fan
    • 1
    • 2
    • 3
  • Daniel J. Ruebusch
    • 1
    • 2
    • 3
  • Asghar A. Rathore
    • 1
    • 2
    • 3
  • Rehan Kapadia
    • 1
    • 2
    • 3
  • Onur Ergen
    • 1
    • 2
    • 3
  • Paul W. Leu
    • 1
    • 2
    • 3
  • Ali Javey
    • 1
    • 2
    • 3
  1. 1.Department of Electrical Engineering and Computer SciencesUniversity of California at BerkeleyBerkeleyUSA
  2. 2.Berkeley Sensor and Actuator CenterUniversity of California at BerkeleyBerkeleyUSA
  3. 3.Materials Sciences DivisionLawrence Berkeley National LaboratoryBerkeleyUSA

Personalised recommendations