Nano Research

, Volume 2, Issue 7, pp 575–582 | Cite as

Kinetically-induced hexagonality in chemically grown silicon nanowires

Open Access
Research Article

Abstract

Various silicon crystal structures with different atomic arrangements from that of diamond have been observed in chemically synthesized nanowires. The structures are typified by mixed stacking mismatches of closely packed Si dimers. Instead of viewing them as defects, we define the concept of hexagonality and describe these structures as Si polymorphs. The small transverse dimensions of a nanowire make this approach meaningful. Unique among the polymorphs are cubic symmetry diamond and hexagonal symmetry wurtzite structures. Electron diffraction studies conducted with Au as an internal reference unambiguously confirm the existence of the hexagonal symmetry Si nanowires.

Cohesive energy calculations suggest that the wurtzite polymorph is the least stable and the diamond polymorph is the most stable. Cohesive energies of intermediate polymorphs follow a linear trend with respect to their structural hexagonality. We identify the driving force in the polymorph formations as the growth kinetics. Fast longitudinal elongation during the growth freezes stacking mismatches and thus leads to a variety of Si polymorphs. The results are expected to shed new light on the importance of growth kinetics in nanomaterial syntheses and may open up ways to produce structures that are uncommon in bulk materials.

Keywords

Silicon nanowires hexagonality polytypes cohesive energy chemical vapor deposition kinetics 

Supplementary material

12274_2009_9058_MOESM1_ESM.pdf (571 kb)
Supplementary material, approximately 572 KB.

References

  1. [1]
    Park, C. H.; Cheong, B. H.; Lee, K. H.; Chang, K. J. Structural and electronic properties of cubic, 2H, 4H, and 6H SiC. Phys. Rev. B: Condens. Matter 1994, 49, 4485–4493.ADSGoogle Scholar
  2. [2]
    Yeh, C.-Y.; Lu, Z. W.; Froyen, S.; Zunger, A. Zinc-blende-wurtzite polytypism in semiconductors. Phys. Rev. B: Condens. Matter 1992, 46, 10086–10097.ADSGoogle Scholar
  3. [3]
    Raffy, C.; Furthmüller, J.; Bechstedt, F. Properties of hexagonal polytypes of group-IV elements from first-principles calculations. Phys. Rev. B: Condens. Matter 2002, 66, 075201.Google Scholar
  4. [4]
    Wentorf, R. H.; Kasper, J. S. Two new forms of silicon. Science 1963, 139, 338–339.CrossRefADSGoogle Scholar
  5. [5]
    Jennings, H. M.; Richman, M. H. A hexagonal (wurtzite) form of silicon. Science 1976, 193, 1242–1243.CrossRefPubMedADSGoogle Scholar
  6. [6]
    Kasper, J. S.; Wentorf, R. H. Hexagonal (wurtzite) silicon. Science 1977, 197, 599.CrossRefPubMedADSGoogle Scholar
  7. [7]
    Sánchez-Dehesa, J.; Vergés, J. A.; Tejedor, C. Diamond structure versus wurtzite structure for silicon. Solid State Commun. 1981, 38, 871–873.CrossRefGoogle Scholar
  8. [8]
    Zhang, D. B.; Hua, M.; Dumitrică, T. Stability of polycrystalline and wurtzite Si nanowires via symmetry-adapted tight-binding objective molecular dynamics. J. Chem. Phys. 2008, 128, 084104.Google Scholar
  9. [9]
    Morral, A. F. I.; Arbiol, J.; Prades, J. D.; Cirera, A.; Morante, J. R. Synthesis of silicon nanowires with wurtzite crystalline structure by using standard chemical vapor deposition. Adv. Mater. 2007, 19, 1347–1351.CrossRefGoogle Scholar
  10. [10]
    Arbiol, J.; Morral, A. F. I.; Estradé, S.; Peiró, F.; Kalache, B.; Cabarrocas, P. R. I.; Morante, J. R. Influence of the (111) twinning on the formation of diamond cubic/diamond hexagonal heterostructures in Cu-catalyzed Si nanowires. J. Appl. Phys. 2008, 104, 064312.Google Scholar
  11. [11]
    Arbiol, J.; Kalache, B.; Cabarrocas, P. R. I.; Morante, J. R.; Morral, A. F. I. Influence of Cu as a catalyst on the properties of silicon nanowires synthesized by the vapor-solid-solid mechanism. Nanotechnology 2007, 18, 305606.Google Scholar
  12. [12]
    Zhao, H. Z.; Zhou, S.; Hasanali, Z. H.; Wang, D. W. Influence of pressure on silicon nanowire growth kinetics. J. Phys. Chem. C 2008, 112, 5695–5698.CrossRefGoogle Scholar
  13. [13]
    Cui, Y.; Duan, X. F.; Hu, J. T.; Lieber, C. M. Doping and electrical transport in silicon nanowires. J. Phys. Chem. B 2000, 104, 5213–5216.CrossRefGoogle Scholar
  14. [14]
    Stadelmann, P. A. EMS—A software package for electron diffraction analysis and HREM image simulation in materials science. Ultramicroscopy 1987, 21, 131–145.CrossRefGoogle Scholar
  15. [15]
    Parthé, E. Crystal Chemistry of Tetrahedral Structures; Taylor & Francis, US, 1964.Google Scholar
  16. [16]
    Cayron, C.; Den Hertog, M.; Latu-Romain, L.; Mouchet, C.; Secouard, C.; Rouviere, J.-L.; Rouviere, E.; Simonato, J.-P. Odd electron diffraction patterns in silicon nanowires and silicon thin films explained by microtwins and nanotwins. J. Appl. Crystallogr. 2009, 42, 242–252.CrossRefGoogle Scholar
  17. [17]
    Wang, Z. W.; Li, Z. Y. Structures and energetics of indium-catalyzed silicon nanowires. Nano Lett. 2009, 94, 1467–1471.CrossRefADSGoogle Scholar
  18. [18]
    Glas, F. A simple calculation of energy changes upon stacking fault formation or local crystalline phase transition in semiconductors. J. Appl. Phys. 2008, 104, 093520.Google Scholar
  19. [19]
    Wei, D. P.; Chen, Q. Metal-catalyzed CVD method to synthesize silicon nanobelts. J. Phys. Chem. C 2008, 112, 15129–15133.CrossRefGoogle Scholar
  20. [20]
    Reyes-Gasga, J.; Gómez-Rodríguez, A.; Gao, X. X.; José-Yacamán, M. On the interpretation of the forbidden spots observed in the electron diffraction patterns of flat Au triangular nanoparticles. Ultramicroscopy 2008, 108, 929–936.CrossRefPubMedGoogle Scholar
  21. [21]
    Wang, Z. W.; Daemen, L. L.; Zhao, Y. S.; Zha, C. S.; Downs, R. T.; Wang, X. D.; Wang, Z. L.; Hemley, R. J. Morphology-tuned wurtzite-type ZnS nanobelts. Nat. Mater. 2005, 4, 922–927.CrossRefPubMedADSGoogle Scholar
  22. [22]
    Johansson, J.; Karlsson, L. S.; Dick, K. A.; Bolinsson, J.; Wacaser, B. A.; Deppert, K.; Samuelson, L. Effects of growth conditions on the crystal structure of gold-seeded GaP nanowires. J. Cryst. Growth 2008, 310, 5102–5105.CrossRefADSGoogle Scholar
  23. [23]
    Hao, Y. F.; Meng, G. W.; Wang, Z. L.; Ye, C. H.; Zhang, L. D. Periodically twinned nanowires and polytypic nanobelts of ZnS: The role of mass diffusion in vapor-liquid-solid growth. Nano Lett. 2006, 6, 1650–1655.CrossRefPubMedADSGoogle Scholar
  24. [24]
    Morales, A. M.; Lieber, C. M. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 1998, 279, 208–211.CrossRefPubMedADSGoogle Scholar

Copyright information

© Tsinghua University Press and Springer Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Department of Chemistry, Merkert Chemistry CenterBoston CollegeChestnut HillUSA

Personalised recommendations