Nano Research

, Volume 2, Issue 7, pp 526–534 | Cite as

Odako growth of dense arrays of single-walled carbon nanotubes attached to carbon surfaces

  • Cary L. Pint
  • Noe T. Alvarez
  • Robert H. HaugeEmail author
Open Access
Research Article


A novel process is demonstrated whereby dense arrays of single-walled carbon nanotubes (SWNT) are grown directly at the interface of a carbon material or carbon fiber. This growth process combines the concepts of SWNT tip growth and alumina-supported SWNT base growth to yield what we refer to as “odako” growth. In odako growth, an alumina flake detaches from the carbon surface and supports catalytic growth of dense SWNT arrays at the tip, leaving a direct interface between the carbon surface and the dense SWNT arrays. In addition to being a new and novel form of SWNT array growth, this technique provides a route toward future development of many important applications for dense aligned SWNT arrays.


Carbon nanotubes carbon fibers chemical vapor deposition 

Supplementary material

12274_2009_9050_MOESM1_ESM.pdf (550 kb)
Supplementary material, approximately 552 KB.


  1. [1]
    Fan, S. S.; Chapline, M. G.; Franklin, N. R.; Tombler, T. W.; Cassell, A. M.; Dai, H. Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 1999, 283, 512–514.CrossRefPubMedADSGoogle Scholar
  2. [2]
    Murakami, Y.; Chiashi, S.; Miyauchi, Y.; Hu, M. H.; Ogura, M.; Okubo, T.; Maruyama, S. Growth of vertically aligned single-walled carbon nanotube films on quartz substrates and their optical anisotropy. Chem. Phys. Lett. 2004, 385, 298–303.CrossRefADSGoogle Scholar
  3. [3]
    Hata, K.; Futaba, D. N.; Mizuno, K.; Namai, T.; Yumura, M.; Iijima, S. Water assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 2004, 306, 1362–1364.CrossRefPubMedADSGoogle Scholar
  4. [4]
    Futaba, D. N.; Hata, K.; Yamada, T.; Hiraoka, T.; Hayamizu, Y.; Kakudate, Y.; Tanaike, O.; Hatori, H.; Yumura, M.; Iijima, S. Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nat. Mater. 2006, 5, 987–994.CrossRefPubMedADSGoogle Scholar
  5. [5]
    Pint, C. L.; Xu, Y. Q.; Pasquali, M.; Hauge, R. H. Formation of highly dense aligned ribbons and transparent films of single-walled carbon nanotubes directly from carpets. ACS Nano 2008, 2, 1871–1878.CrossRefPubMedGoogle Scholar
  6. [6]
    Sethi, S.; Ge, L. H.; Ci, L. J.; Ajayan, P. M.; Dhinojwala, A. Gecko-inspired carbon nanotube-based self-cleaning adhesives. Nano Lett. 2008, 8, 822–825.CrossRefPubMedADSGoogle Scholar
  7. [7]
    Majumder, M.; Chopra, N.; Andrews, R.; Hinds, B. J. Nanoscale hydrodynamics-Enhanced flow in carbon nanotubes. Nature 2005, 438, 44.CrossRefPubMedADSGoogle Scholar
  8. [8]
    Xiao, L.; Chen, Z.; Feng, C.; Liu, L.; Bai, Z. Q.; Wang, Y.; Qian, L.; Zhang, Y. Y.; Li, Q. Q.; Jiang, K. L.; Fan, S. S. Flexible, stretchable, transparent carbon nanotube thin film loudspeakers. Nano Lett. 2008, 8, 4539–4545.CrossRefPubMedADSGoogle Scholar
  9. [9]
    Liu, X.; Baronian, K. H. R.; Downard, A. J. Direct growth of vertically aligned carbon nanotubes on a planar carbon substrate by thermal chemical vapor deposition. Carbon 2009, 47, 500–506.CrossRefGoogle Scholar
  10. [10]
    Qu, L. T.; Zhao, Y.; Dai, L. Carbon microfibers sheathed with aligned carbon nanotubes: Towards multidimensional, multicomponent, and multifunctional nanomaterials. Small 2006, 2, 1052–1059.CrossRefPubMedGoogle Scholar
  11. [11]
    Tzeng, S.-S.; Hung, K.-H.; Ko, T. -H. Growth of carbon nanofibers on activated carbon fiber fabrics. Carbon 2006, 44, 859–865.CrossRefGoogle Scholar
  12. [12]
    De Riccardis, M. F.; Carbone, D.; Dikonimos Makris, Th.; Giorgi, R.; Lisi, N.; Salernitano, E. Anchorage of carbon nanotubes grown on carbon fibres. Carbon 2006, 44, 671–674.CrossRefGoogle Scholar
  13. [13]
    Thostenson, E. T.; Li, W. Z.; Wang, D. Z.; Ren, Z. F.; Chou, T. W. Carbon nanotube/carbon fiber hybrid multiscale composites. J. Appl. Phys. 2002, 91, 6034–6037.CrossRefADSGoogle Scholar
  14. [14]
    Hung, K. H.; Tzeng, S. S; Kuo, W. S.; Wei, B. O.; Ko, T. H. Growth of carbon nanofibers on carbon fabric with Ni nanocatalyst prepared using pulse electrodeposition. Nanotechnology 2008, 19, 295602.CrossRefADSGoogle Scholar
  15. [15]
    Huang, S. M. Woodson, M.; Smalley. R. E.; Liu, J. Growth mechanism of oriented long single walled carbon nanotubes using “fast heating” chemical vapor deposition process. Nano Lett. 2004, 4, 1025–1028.CrossRefADSGoogle Scholar
  16. [16]
    Pint, C. L.; Nicholas, N.; Pheasant, S. T.; Duque, J. G.; Parra-Vasquez, A. N. G.; Eres, G.; Pasquali, M.; Hauge, R. H. Temperature and gas pressure effects in vertically aligned carbon nanotube growth from Fe-Mo catalyst. J. Phys. Chem. C 2008, 112, 14041–14051.CrossRefGoogle Scholar
  17. [17]
    Pint, C. L.; Pheasant, S. T.; Pasquali, M.; Coulter, K. E.; Schmidt, H. K.; Hauge, R. H. Synthesis of high aspect-ratio carbon nanotube “flying carpets” from nanostructured flake substrates. Nano Lett. 2008, 8, 1879–1883.CrossRefPubMedADSGoogle Scholar
  18. [18]
    Pint, C. L.; Pheasant, S. T.; Parra-Vasquez, A. N. G.; Horton, C.; Xu, Y. O.; Hauge, R. H. Investigation of optimal parameters for oxide-assisted growth of vertically aligned single-walled carbon nanotubes. J. Phys. Chem. C 2009, 113, 4125 4133.CrossRefGoogle Scholar
  19. [19]
    Amama, P. B.; Pint, C. L.; McJilton, L.; Kim, S. M.; Stach, E. A.; Murray, P. T.; Hauge, R.H.; Maruyama, B. Role of water in super growth of single-walled carbon nanotube carpets. Nano Lett. 2009, 9, 44–49.CrossRefPubMedADSGoogle Scholar
  20. [20]
    Doorn, S. K.; Araujo, P. T.; Hata, K.; Jorio, A. Excitons and exciton-phonon coupling in metallic single-walled carbon nanotubes: Resonance raman spectroscopy. Phys. Rev. B 2008, 78, 165408.CrossRefADSGoogle Scholar
  21. [21]
    Zhao, B.; Futaba, D. N.; Yasuda, S.; Akoshima, M.; Yamada, T.; Hata, K. Exploring advantages of diverse carbon nanotube forests with tailored structures synthesized by supergrowth from engineered catalysts. ACS Nano 2009, 3, 108–114.CrossRefPubMedGoogle Scholar

Copyright information

© Tsinghua University Press and Springer Berlin Heidelberg 2009

Authors and Affiliations

  • Cary L. Pint
    • 1
    • 3
  • Noe T. Alvarez
    • 2
    • 3
  • Robert H. Hauge
    • 2
    • 3
    Email author
  1. 1.Department of Physics and AstronomyRice UniversityHoustonUSA
  2. 2.Department of ChemistryRice UniversityHoustonUSA
  3. 3.Richard E. Smalley Institute for Nanoscale Science and TechnologyRice UniversityHoustonUSA

Personalised recommendations