Nano Research

, Volume 2, Issue 5, pp 400–405 | Cite as

Size-dependent joule heating of gold nanoparticles using capacitively coupled radiofrequency fields

  • Christine H. Moran
  • Sean M. Wainerdi
  • Tonya K. Cherukuri
  • Carter Kittrell
  • Benjamin J. Wiley
  • Nolan W. Nicholas
  • Steven A. Curley
  • John S. Kanzius
  • Paul CherukuriEmail author
Open Access
Research Article


Capacitively coupled shortwave radiofrequency fields (13.56 MHz) resistively heat low concentrations (∼1 ppm) of gold nanoparticles with a thermal power dissipation of ∼380 kW/g of gold. Smaller diameter gold nanoparticles (< 50 nm) heat at nearly twice the rate of larger diameter gold nanoparticles (≥50 nm), which is attributed to the higher resistivity of smaller gold nanostructures. A Joule heating model has been developed to explain this phenomenon and provides critical insights into the rational design and engineering of nanoscale materials for noninvasive thermal therapy of cancer.


Resistivity radiofrequency gold nanoparticles cancer thermal 

Supplementary material

12274_2009_9048_MOESM1_ESM.pdf (246 kb)
Supplementary material, approximately 340 KB.


  1. [1]
    Hirsch, L. R.; Stafford, R. J.; Bankson, J. A.; Sershen, S. R.; Rivera, B.; Price, R. E.; Hazle, J. D.; Halas, N. J.; West, J. L. Nanoshell-mediated near infrared thermal therapy of tumors under magnetic resonance guidance. P. Natl. Aacd. Sci. USA 2003, 100, 13549–13554.CrossRefADSGoogle Scholar
  2. [2]
    Gobin, A. M.; Lee, M. H.; Halas, N. J.; James, W. D.; Drezek, R. A.; West, J. L. Near infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett. 2007, 7, 1929–1934.CrossRefPubMedADSGoogle Scholar
  3. [3]
    Hergt, R.; Hiergeist, R.; Hilger, I.; Kaiser, W. A.; Lapatnikov, Y.; Margel, S.; Richter, U. Maghemite nanoparticles with very high AC-losses for application in RF-magnetic hyperthermia. J. Magn. Magn. Mater. 2004, 270, 345–357.CrossRefADSGoogle Scholar
  4. [4]
    Arnfield, M. R.; Mathew, R. P.; Tulip, J.; McPhee, M. S. Analysis of tissue optical coefficients using an approximate equation valid for comparable absorption and scattering. Phys. Med. Biol. 1992, 37, 1219–1230.CrossRefPubMedGoogle Scholar
  5. [5]
    Kalambur, V. S.; Longmire, E. K.; Bischof, J. C. Cellular level loading and heating of superparamagnetic iron oxide nanoparticles. Langmuir 2005, 23, 12329–12336.CrossRefGoogle Scholar
  6. [6]
    Curley, S. A.; Cherukuri, P.; Briggs, K.; Patra, C. R.; Upton, M.; Dolson, E.; Mukherjee, P. Noninvasive radiofrequency field induced hyperthermic cytotoxicity in human cancer cells using cetuximab-targeted gold nanoparticles. J. Exp. Ther. Oncol. 2008, 7, 313–326.PubMedGoogle Scholar
  7. [7]
    Gannon, C. J.; Patra, C. R; Bhattacharya, R., Mukerjee, P.; Curley, S. A. Intracellular gold nanoparticles enhance non-invasive radiofrequency thermal destruction of human gastrointestinal cancer cells. J. Nanobiotechnol. 2008, 6, 2.CrossRefGoogle Scholar
  8. [8]
    Gannon, C. J.; Cherukuri, P.; Yakobson, B. I.; Cognet, L.; Kanzius, J. S.; Kittrell, C.; Weisman, R. B.; Pasquali, M.; Schmidt, H. K.; Smalley, R. E.; Curley, S. A. Carbon nanotube-enhanced thermal destruction of cancer cells in a noninvasive radiofrequency field. Cancer 2007, 110, 2654–2665.CrossRefPubMedGoogle Scholar
  9. [9]
    Kanzius, J. S. U.S. Patent Pub. Nos. US 2006/0190063 A1, US2005/02511233 A1, US2005/0251234 A1, and World Intellectual Property Organization WO 2007/027614Google Scholar
  10. [10]
    Wiley, B. J.; Wang, Z.; Wei, J.; Yin, Y.; Cobden, D. H.; Xia, Y. Synthesis and electrical characterization of silver nanobeams. Nano Lett. 2006, 6, 2273–2278.CrossRefPubMedADSGoogle Scholar
  11. [11]
    Link, S.; El-Sayed, M. A. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B 1999, 103, 8410–8426.CrossRefGoogle Scholar
  12. [12]
    Link, S.; Burda, C.; Wang, Z. L; El-Sayed, M. A. Electron dynamics in gold and gold-silver nanoparticles: The influence of a non-equilibrium electron distribution and the size dependence of the electron-phonon relaxation. J. Chem. Phys. 1999, 111, 1255–1264.CrossRefADSGoogle Scholar
  13. [13]
    Kreibig, U. Electronic properties of small silver particles: The optical constants and their temperature dependence. J. Phys. F: Met. Phys. 1974, 4, 999–1014.CrossRefADSGoogle Scholar
  14. [14]
    Kittel, C. Introduction to Solid State Physics; J. Wiley & Sons: New York, NY, 2005.Google Scholar
  15. [15]
    Johnson, P. B.; Christy, R. W. Optical constants of the noble metals. Phys. Rev. B. 1972, 6, 4370–4379.CrossRefADSGoogle Scholar
  16. [16]
    Metaxas, A. C. Foundations of Electroheat: A Unified Approach; J. Wiley & Sons: New York, NY, 1996.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Christine H. Moran
    • 1
    • 2
  • Sean M. Wainerdi
    • 2
    • 3
  • Tonya K. Cherukuri
    • 4
  • Carter Kittrell
    • 4
  • Benjamin J. Wiley
    • 5
  • Nolan W. Nicholas
    • 6
  • Steven A. Curley
    • 2
    • 7
  • John S. Kanzius
  • Paul Cherukuri
    • 2
    • 4
    • 5
    • 8
    Email author
  1. 1.Department of BioengineeringRice UniversityHoustonUSA
  2. 2.Department of Surgical OncologyMD Anderson Cancer CenterHoustonUSA
  3. 3.Department of BioengineeringTexas A&M UniversityCollege StationUSA
  4. 4.Department of Chemistry and Richard E. Smalley Institute for Nanoscale Science and TechnologyRice UniversityHoustonUSA
  5. 5.Department of Chemistry and Chemical BiologyHarvard UniversityCambridgeUSA
  6. 6.Department of Physics and Richard E. Smalley Institute for Nanoscale Science and TechnologyRice UniversityHoustonUSA
  7. 7.Department of Mechanical Engineering and Material ScienceRice UniversityHoustonUSA
  8. 8.Department of Experimental TherapeuticsMD Anderson Cancer CenterHoustonUSA

Personalised recommendations