Nano Research

, Volume 2, Issue 6, pp 425–447 | Cite as

An essay on synthetic chemistry of colloidal nanocrystals

Open Access
Review Article

Abstract

The central goal of synthetic chemistry of colloidal nanocrystals at present is to discover functional materials. Such functional materials should help mankind to meet the tough challenges brought by the rapid depletion of natural resources and the significant increase of population with higher and higher living standards. With this thought in mind, this essay discusses the basic guidelines for developing this new branch of synthetic chemistry, including rational synthetic strategies, functional performance, and green chemistry principles.

Keywords

Colloidal nancrystal synthetic chemistry function materiols green chemistry crystallization 

References

  1. [1]
    Armaroli, N.; Balzani, V. The future of energy supply: Challenges and opportunities. Angew. Chem. Int. Ed 2007, 46, 52–66.CrossRefGoogle Scholar
  2. [2]
    Brus, L. E. A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites. J. Chem. Phys. 1983, 79, 5566–5571.CrossRefADSGoogle Scholar
  3. [3]
    Peng, Z. A.; Peng, X. Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: Nucleation and growth. J. Am. Chem. Soc. 2002, 124, 3343–3353.CrossRefPubMedGoogle Scholar
  4. [4]
    Turkevich, J. Collodial gold. Part I. Gold Bull. 1985, 18, 86–91.Google Scholar
  5. [5]
    Mullin, J. W. Crystallization, 3nd Edn. Butterworth-Heinemann: Oxford, 1997.Google Scholar
  6. [6]
    Oxtoby, D. W. Nucleation of first-order phase transitions. Acc. Chem. Res. 1998, 31, 91–97.CrossRefGoogle Scholar
  7. [7]
    Peng, X. G. Green chemical approaches toward high-quality semiconductor nanocrystals. Chem. Eur. J. 2002, 8, 334–339.CrossRefGoogle Scholar
  8. [8]
    Murray, C. B.; Sun, S. H.; Gaschler, W.; Doyle, H.; Betley, T. A.; Kagan, C. R. Colloidal synthesis of nanocrystals and nanocrystal superlattices. IBM J. Res. Dev. 2001, 45, 47–56.CrossRefGoogle Scholar
  9. [9]
    Peng, X. G.; Manna, L.; Yang, W. D.; Wickham, J.; Scher, E.; Kadavanich, A.; Allvisatos, A. P. Shape control of CdSe nanocrystals. Nature 2000, 404, 59–61.CrossRefPubMedADSGoogle Scholar
  10. [10]
    Thessing, J.; Qian, J. H.; Chen, H. Y.; Pradhan, N.; Peng, X. G. Interparticle influence on size/size distribution evolution of nanocrystals. J. Am. Chem. Soc. 2007, 129, 2736–2737.CrossRefPubMedGoogle Scholar
  11. [11]
    Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271, 933–937.CrossRefADSGoogle Scholar
  12. [12]
    Brus, L. E. Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. J. Chem. Phys. 1984, 80, 4403–4409.CrossRefADSGoogle Scholar
  13. [13]
    Yu, W. W.; Qu, L. H.; Guo, W. Z.; Peng, X. G. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater. 2003, 15, 2854–2860.CrossRefGoogle Scholar
  14. [14]
    Qu, L. H.; Peng, X. G. Control of photoluminescence properties of CdSe nanocrystals in growth. J. Am. Chem. Soc. 2002, 124, 2049–2055.CrossRefPubMedGoogle Scholar
  15. [15]
    Talapin, D. V.; Rogach, A. L.; Shevchenko, E. V.; Kornowski, A.; Haase, M.; Weller, H. Dynamic distribution of growth rates within the ensembles of colloidal II–VI and III–V semiconductor nanocrystals as a aactor governing their photoluminescence efficiency. J. Am. Chem. Soc. 2002, 124, 5782–5790.CrossRefPubMedGoogle Scholar
  16. [16]
    Peng, X. G.; Wickham, J.; Alivisatos, A. P. Kinetics of II–VI and III–V colloidal semiconductor nanocrystal growth: “Focusing” of size distributions. J. Am. Chem. Soc. 1998, 120, 5343–5344.CrossRefGoogle Scholar
  17. [17]
    Chen, Y. F.; Kim, M.; Lian, G. D.; Johnson, M. B.; Peng, X. G. Side reactions in controlling the quality, yield, and stability of high quality colloidal nanocrystals. J. Am. Chem. Soc. 2005, 127(38), 13331–13337.CrossRefPubMedGoogle Scholar
  18. [18]
    Holland, G. P.; Sharma, R.; Agola, J. O.; Amin, S.; Solomon, V. C.; Singh, P.; Buttry, D. A.; Yarger, J. L. NMR characterization of phosphonic acid capped SnO2 nanoparticles. Chem. Mater. 2007, 19, 2519–2526.CrossRefGoogle Scholar
  19. [19]
    Ji, X. H.; Copenhaver, D.; Sichmeller, C.; Peng, X. G. Ligand bonding and dynamics on colloidal nanocrystals at room temperature: The case of alkylamines on CdSe nanocrystals. J. Am. Chem. Soc. 2008, 130, 5726–5735.CrossRefPubMedGoogle Scholar
  20. [20]
    Pradhan, N.; Reifsnyder, D.; Xie, R. G.; Aldana, J.; Peng, X. G. Surface ligand dynamics in growth of nanocrystals. J. Am. Chem. Soc. 2007, 129, 9500–9509.CrossRefPubMedGoogle Scholar
  21. [21]
    Chen, Y. F.; Johnson, E.; Peng, X. G. Formation of monodisperse and shape-controlled MnO nanocrystals in non-injection synthesis: Self-focusing via ripening. J. Am. Chem. Soc. 2007, 129, 10937–10947.CrossRefPubMedGoogle Scholar
  22. [22]
    Ji, X. H.; Song, X. N.; Li, J.; Bai, Y. B.; Yang, W. S.; Peng, X. G. Size control of gold nanocrystals in citrate reduction: The third role of citrate. J. Am. Chem. Soc. 2007, 129, 13939–13948.CrossRefPubMedGoogle Scholar
  23. [23]
    Steigerwald, M. L.; Brus, L. E. Semiconductor crystallites: A class of large molecules. Acc. Chem. Res. 1990, 23, 183–188.CrossRefGoogle Scholar
  24. [24]
    Murray, C. B.; Norris, D. J.; Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 115, 8706–8715.CrossRefGoogle Scholar
  25. [25]
    Sugimoto, T. Preparation of monodispersed colloidal particles. Adv. Colloid Interface Sci. 1987, 28, 65–108.CrossRefGoogle Scholar
  26. [26]
    Xie, R. G.; Peng, X. G. Synthetic scheme for high-quality InAs nanocrystals based on self-focusing and one-pot synthesis of InAs-based core-shell nanocrystals. Angew. Chem. Int. Ed. 2008, 47, 7677–7680.CrossRefGoogle Scholar
  27. [27]
    Cumberland, S. L.; Hanif, K. M.; Javier, A.; Khitrov, G. A.; Strouse, G. F.; Woessner, S. M.; Yun, C. S. Inorganic clusters as single-source precursors for preparation of CdSe, ZnSe, and CdSe/ZnS nanomaterials. Chem. Mater. 2002, 14, 1576–1584.CrossRefGoogle Scholar
  28. [28]
    Qu, L. H.; Yu, W. W.; Peng, X. G. In situ observation of the nucleation and growth of CdSe nanocrystals. Nano Lett. 2004, 4, 465–469.CrossRefADSGoogle Scholar
  29. [29]
    Yang, Y. A.; Wu, H. M.; Williams, K. R.; Cao, Y. C. Synthesis of CdSe and CdTe nanocrystals without precursor injection. Angew. Chem. Int. Ed. 2005, 44, 6712–6715.CrossRefGoogle Scholar
  30. [30]
    Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Synthesis and characterization of monodisperse nanocrystals and close-paked nanocrystal assemblies. Annu. Rev. Mater. Sci. 2000, 30, 545–610.CrossRefADSGoogle Scholar
  31. [31]
    Pacholski, C.; Kornowski, A.; Weller, H. Self-assembly of ZnO: From nanodots to nanorods. Angew. Chem. Int. Ed. 2002, 41, 1188–1191.CrossRefGoogle Scholar
  32. [32]
    Tang, Z.; Kotov, N. A.; Giersig, M. Science 2002, 297, 237–240.CrossRefPubMedADSGoogle Scholar
  33. [33]
    Cho, K. -S.; Talapin, D. V.; Gaschler, W.; Murray, C. B. Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles. J. Am. Chem. Soc. 2005, 127, 7140–7147.CrossRefPubMedGoogle Scholar
  34. [34]
    Narayanaswamy, A.; Xu, H. F.; Pradhan, N.; Peng, X. G. Crystalline nanoflowers withdifferent chemical compositions and physical properties grown by limited ligand protection. Angew. Chem. Int. Ed. 2006, 45, 5361–5364.CrossRefGoogle Scholar
  35. [35]
    Yu, W. W.; Peng, X. G. Formation of high-quality CdS and other II–VI semiconductor nanocrystals in noncoordinating solvents: Tunable reactivity of monomers. Angew. Chem., Int. Edn. 2002, 41, 2368–2371.CrossRefGoogle Scholar
  36. [36]
    Peng, Z. A.; Peng, X. G. Mechanisms of the shape evolution of CdSe nanocrystals. J. Am. Chem. Soc. 2001, 123, 1389–1395.CrossRefGoogle Scholar
  37. [37]
    Bruchez, M., Jr.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Semiconductor nanocrystals as fluorescent biological labels. Science 1998, 281, 2013–2016.CrossRefPubMedADSGoogle Scholar
  38. [38]
    Chan, W. C. W.; Nile, S. M. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998, 281, 2016–2018.CrossRefPubMedADSGoogle Scholar
  39. [39]
    Greenham, N. C.; Peng, X.; Alivisatos, A. P. Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity. Phys. Rev. B 1996, 54, 17628–17637.CrossRefADSGoogle Scholar
  40. [40]
    Munro, A. M.; Plante, I. J. -L.; Ng, M. S.; Ginger, D. S. Quantitative study of the effects of surface ligand concentration on CdSe nanocrystal photoluminescence. J. Phys. Chem. C 2007, 111, 6220–6227.CrossRefGoogle Scholar
  41. [41]
    Bullen, C.; Mulvaney, P. The effects of chemisorption on the luminescence of CdSe quantum dots. Langmuir 2006, 22, 3007–3013.CrossRefPubMedGoogle Scholar
  42. [42]
    Wang, Y. A.; Li, J. J.; Chen, H. Y.; Peng, X. G. Stabilization of inorganic nanocrystals by organic dendrons. J. Am. Chem. Soc. 2002, 124, 2293–2298.CrossRefPubMedGoogle Scholar
  43. [43]
    Heaven, M. W.; Dass, A.; White, P. S.; Holt, K. M.; Murray, R. W. Crystal structure of the gold nanoparticle [N(C8H17)4][Au25(SCH2CH2Ph)18]. J. Am. Chem. Soc. 2008, 130, 3754–3755.CrossRefPubMedGoogle Scholar
  44. [44]
    Jana, N. R.; Peng, X. G. Single-phase and gram-scale routes toward nearly monodisperse Au and other noble metal nanocrystals. J. Am. Chem. Soc. 2003, 125, 14280–14281.CrossRefPubMedGoogle Scholar
  45. [45]
    Steigerwald, M. L.; Brus, L. E. Synthesis, stabilization, and electronic structure of quantum semiconductor nanoclusters. Annu. Rev. Mater. Sci. 1989, 19, 471–495.CrossRefADSGoogle Scholar
  46. [46]
    Katari, J. E. B.; Colvin, V. L.; Alivisatos, A. P. X-ray photoelectron spectroscopy of CdSe nanocrystals with applications to studies of the nanocrystal surface. J. Phys. Chem. 1994, 98, 4109–4117.CrossRefGoogle Scholar
  47. [47]
    Hines, M. A.; Guyot-Sionnest, P. Second harmonic generation studies of methylene blue orientation at silica surfaces. J. Phys. Chem. 1996, 100, 468–471.CrossRefGoogle Scholar
  48. [48]
    Li, J. J.; Wang, Y. A.; Guo, W. Z.; Keay, J. C.; Mishima, T. D.; Johnson, M. B.; Peng, X. G. Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction. J. Am. Chem. Soc. 2003, 125, 12567–12575.CrossRefPubMedGoogle Scholar
  49. [49]
    Pradhan, N.; Battaglia, D. M.; Liu, Y.; Peng, X. Efficient, stable, small, and water-soluble doped ZnSe nanocrystal emitters as non-cadmium biomedical labels. Nano Lett. 2007, 7, 312–317.CrossRefPubMedADSGoogle Scholar
  50. [50]
    Pradhan, N.; Goorskey, D.; Thessing, J.; Peng, X. G. An alternative of CdSe nanocrystal emitters: Pure and tunable impurity emissions in ZnSe nanocrystals. J. Am. Chem. Soc. 2005, 127, 17586–17587.CrossRefPubMedGoogle Scholar
  51. [51]
    Norris, D. J.; Yao, N.; Charnock, F. T.; Kennedy, T. A. High-quality manganese-doped ZnSe nanocrystals. Nano Lett. 2001, 1, 3–7.CrossRefADSGoogle Scholar
  52. [52]
    Radovanovic, P. V.; Gamelin, D. R. Electronic absorption spectroscopy of cobalt ions in diluted magnetic semiconductor quantum dots: Demonstration of an isocrystalline core/shell synthetic method. J. Am. Chem. Soc. 2001, 123, 12207–12214.CrossRefPubMedGoogle Scholar
  53. [53]
    Hanif, K. M.; Meulenberg, R. W.; Strouse, G. F. Magnetic ordering in doped Cd1−xCoxSe diluted magnetic quantum dots. J. Am. Chem. Soc. 2002, 124, 11495–11502.CrossRefPubMedGoogle Scholar
  54. [54]
    Schwartz, D. A.; Norberg, N. S.; Nguyen, Q. P.; Parker, J. M.; Gamelin, D. R. Magnetic quantum dots: Synthesis, spectroscopy, and magnetism of Co2+- and Ni2+-doped ZnO nanocrystals. J. Am. Chem. Soc. 2003, 125, 13205–13218.CrossRefPubMedGoogle Scholar
  55. [55]
    Bhargava, R. N.; Gallagher, D.; Hong, X.; Nurmikko, A. Optical properties of manganese-doped nanocrystals of ZnS. Phys. Rev. Lett. 1994, 72, 416–419.CrossRefPubMedADSGoogle Scholar
  56. [56]
    Yang, Y. G.; Chen, O.; Angerhofer, A.; Cao, Y. C. Radial-position-controlled doping in CdS/ZnS core/Shell nanocrystals. J. Am. Chem. Soc. 2006, 128, 12428–12429.CrossRefPubMedGoogle Scholar
  57. [57]
    Pradhan, N.; Peng, X. G. Efficient and color-tunable Mn-doped ZnSe nanocrystal emitters: control of optical performance via greener synthetic chemistry. J. Am. Chem. Soc. 2007, 129, 3339–3347.CrossRefPubMedGoogle Scholar
  58. [58]
    Peng, Z. A.; Peng, X. G. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J. Am. Chem. Soc. 2001, 123, 183–184.CrossRefPubMedGoogle Scholar
  59. [59]
    Qu, L. H.; Peng, Z. A.; Peng, X. G. Alternative routes toward high quality CdSe nanocrystals. Nano Lett. 2001, 1, 333–337.CrossRefADSGoogle Scholar
  60. [60]
    Xie, R. G.; Battaglia, D.; Peng, X. G. Colloidal InP nanocrystals as efficient emitters covering blue to nearinfrare. J. Am. Chem. Soc. 2007, 129, 15432–15433.CrossRefPubMedGoogle Scholar
  61. [61]
    Xie, R. G.; Chen, K.; Chen, X. Y.; Peng X. G. InAs/InP/ZnSe core/shell/shell quantum dots as near-infrared emitters: Bright, narrow-band, non-cadmium containing, and biocompatible. Nano Res. 2008, 1, 457–464.CrossRefPubMedGoogle Scholar
  62. [62]
    Li, L. S.; Pradhan, N.; Wang, Y. J.; Peng, X. G. High quality ZnSe and ZnS nanocrystals formed by activating zinc carboxylate precursors. Nano Lett. 2004, 4, 2261–2264.CrossRefADSGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryUniversity of ArkansasFayettevilleUSA

Personalised recommendations