Nano Research

, Volume 2, Issue 5, pp 394–399 | Cite as

Thermoelectric properties of p-type PbSe nanowires

  • Wenjie Liang
  • Oded Rabin
  • Allon I. Hochbaum
  • Melissa Fardy
  • Minjuan Zhang
  • Peidong Yang
Open Access
Research Article


The thermoelectric properties of individual solution-phase synthesized p-type PbSe nanowires have been examined. The nanowires showed near degenerately doped charge carrier concentrations. Compared to the bulk, the PbSe nanowires exhibited a similar Seebeck coefficient and a significant reduction in thermal conductivity in the temperature range 20 K to 300 K. Thermal annealing of the PbSe nanowires allowed their thermoelectric properties to be controllably tuned by increasing their carrier concentration or hole mobility. After optimal annealing, single PbSe nanowires exhibited a thermoelectric figure of merit (ZT) of 0.12 at room temperature.


Nanowire thermoelectrics thermopower thermal conductivity lead chalcogenide 


  1. [1]
    Majumdar, A. Thermoelectricity in semiconductor nanostructures. Science 2004, 303, 777–778.CrossRefPubMedGoogle Scholar
  2. [2]
    Goldsmid, H. Thermoelectric Refrigeration; Plenum Press: New York, 1964.Google Scholar
  3. [3]
    Hicks, L. D.; Dresselhaus, M. S. Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 1993, 47, 12727–12731.CrossRefADSGoogle Scholar
  4. [4]
    Hicks, L. D.; Dresselhaus, M. S. Thermoelectric figure of merit of a one-dimensional conductor. Phys. Rev. B 1993, 47, 16631–16634.CrossRefADSGoogle Scholar
  5. [5]
    Harman, T. C.; Taylor, P. J.; Walsh, M. P.; LaForge, B. E. Quantum dot superlattice thermoelectric materials and devices. Science 2002, 297, 2229–2232.CrossRefPubMedADSGoogle Scholar
  6. [6]
    Venkatasubramanian, R.; Siivola, E.; Colpitts, T.; O’Quinn, B. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 2001, 413, 507–602.CrossRefGoogle Scholar
  7. [7]
    Hochbaum, A. I.; Chen, R. K.; Delgado, R. D.; Liang, W. J.; Garnet, E. C.; Najarian, M.; Majumdar, A.; Yang, P. D. Enhanced thermoelectric performance of rough silicon nanowires. Nature 2008, 451, 163–167.CrossRefPubMedADSGoogle Scholar
  8. [8]
    Boukai, A.; Bunimovich, Y.; Tahir-Kheli, J.; Yu, J. K.; Goddard, W. A.; Heath, J. R. Silicon nanowires as efficient thermoelectric materials. Nature 2008, 451, 167–169.CrossRefADSGoogle Scholar
  9. [9]
    Wang, R. Y.; Feser, J. P.; Lee, J. S.; Talapin D. V.; Segalman, R.; Majumdar, A. Enhanced thermopower in PbSe nanocrystal quantum dot superlattices. Nano Lett. 2008, 8, 2283–2288.CrossRefPubMedADSGoogle Scholar
  10. [10]
    Hsu, K.F.; Loo, S. Guo, F.; Chen, W.; Dyck, J. S.; Uher, C.; Hogan, T.; Polychroniadis, E. K.; Kanatzidis, M. G. Cubic AgPbmSbTe2+m: Bulk thermoelectric materials with high figure of merit. Science 2004, 303, 818–821.CrossRefPubMedADSGoogle Scholar
  11. [11]
    Poudel, B.; Hao, Q.; Ma, Y.; Lan, Y. C.; Minnich, A.; Yu, B.; Yan, X.; Wang, D. Z.; Muto, A.; Vashaee, D; Chen, X. Y.; Liu, J. M.; Dresselhaus, M. S; Chen, G.; Ren, Z. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science, 2008, 320, 634–638.CrossRefPubMedADSGoogle Scholar
  12. [12]
    Cho, K.; Talapin, D. V.; Gaschler, W.; Murray, C. B. Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles. J. Am. Chem. Soc. 2005, 127, 7140–7147.CrossRefPubMedGoogle Scholar
  13. [13]
    Zou, J.; Balandin, A. Phonon heat conduction in a semiconductor nanowire. J. Appl. Phys. 2001, 89, 2932–2938.CrossRefADSGoogle Scholar
  14. [14]
    Moore, A. L.; Saha, S. K.; Prasher, R. S.; Li, S. Phonon backscattering and thermal conductivity suppression in sawtooth nanowires. Appl. Phys. Lett. 2008, 93, 083112.Google Scholar
  15. [15]
    Liang, W. J.; Hochbaum, A. I.; Fardy, M.; Rabin, O.; Zhang, M. J.; Yang, P. D. Field-effect modulation of Seebeck coefficient in single PbSe nanowires. Nano Lett. 2009, 9, 1689–1693.CrossRefPubMedADSGoogle Scholar
  16. [16]
    Abrams, H.; Tauber, R. N. Thermoelectric power of single-crystal p-type PbSe. J. Appl. Phys. 1969, 40, 3868–3870.CrossRefADSGoogle Scholar
  17. [17]
    Li, D.; Wu, Y.; Kim, P.; Shi, L.; Yang, P. D.; Majumdar, A. Thermal conductivity of individual silicon nanowires. Appl. Phys. Lett. 2003, 83, 2934–2936.CrossRefADSGoogle Scholar
  18. [18]
    Fardy, M. Hochbaum, A.; Goldberger, J.; Zhang, M. M.; Yang, P. D. Synthesis and thermoelectrical characterization of lead chalcogenide nanowires. Adv. Mater. 2007, 19, 3047–3051.CrossRefGoogle Scholar
  19. [19]
    Shi, L.; Li, D. Y.; Yu, C. H.; Jang, W. Y.; Kim. D.; Yao, Z.; Kim, P.; Majumdar, A. Measuring thermal and thermoelectric properties of one-dimensional nanostructures using a microfabricated device. J. Heat Transf. 2003, 125, 881–888.CrossRefGoogle Scholar
  20. [20]
    Allgaier, R.; Scanlon, W. Moblity of electrons and holes in PbS, PbSe, and PbTe between room temperature and 4.2-degrees-K. Phys. Rev. 1958, 111, 1029–1037.CrossRefADSGoogle Scholar
  21. [21]
    Tang, Y. H.; Zheng, Y. F.; Lee, C. S.; Lee, S. T. A simple route to annihilate defects in silicon nanowires. Chem. Phys. Lett. 2000, 328, 346–349.CrossRefADSGoogle Scholar
  22. [22]
    Gray, D. E. American Institute of Physics Handbook, 3rd ed; McGraw-Hill: New York, 1972.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Wenjie Liang
    • 1
  • Oded Rabin
    • 1
  • Allon I. Hochbaum
    • 1
  • Melissa Fardy
    • 1
  • Minjuan Zhang
    • 2
  • Peidong Yang
    • 1
  1. 1.Department of ChemistryUniversity of CaliforniaBerkeleyUSA
  2. 2.Materials Research Department, Toyota Technical CenterToyota Motor Engineering & Manufacturing North America (TEMA) Inc.Ann ArborUSA

Personalised recommendations