Nano Research

, Volume 2, Issue 5, pp 386–393

Au-Ag alloy nanoporous nanotubes

Open Access
Research Article

Abstract

Metallic nanostructures with hollow interiors or tailored porosity represent a special class of attractive materials with intriguing chemicophysical properties. This paper presents the fabrication of a new type of metallic nanoporous nanotube structure based on a facile and effective combination of nanocrystal growth and surface modification. By controlling the individual steps involved in this process, such as nanowire growth, surface modification, thermal diffusion, and dealloying, one-dimensional (1-D) metallic nanostructures can be prepared with tailored structural features and pre-designed functionalities. These tubular and porous nanostructures show distinct optical properties, such as tunable absorption in the near-infrared region, and enhanced capability for electrochemiluminescence signal amplification, which make them particularly desirable as novel 1-D nanocarriers for biomedical, drug delivery and sensing applications.

Keywords

Nanoporous nanotube gold optical properties electrochemiluminescence 

Supplementary material

12274_2009_9038_MOESM1_ESM.pdf (318 kb)
Supplementary material, approximately 340 KB.

References

  1. [1]
    Martin, C. R. Nanomaterials—A membrane-based synthetic approach. Science 1994, 266, 1961–1966.CrossRefPubMedADSGoogle Scholar
  2. [2]
    Wirtz, M.; Parker, M.; Kobayashi, Y.; Martin, C. R. Template-synthesized nanotubes for chemical separations and analysis. Chem. Eur. J. 2002, 8, 3572–3578.CrossRefGoogle Scholar
  3. [3]
    Ding, Y.; Erlebacher, J. Nanoporous metals with controlled multimodal pore size distribution. J. Am. Chem. Soc. 2003, 125, 7772–7773.CrossRefPubMedGoogle Scholar
  4. [4]
    Ding, Y.; Kim, Y. J.; Erlebacher, J. Nanoporous gold leaf: “Ancient technology”/advanced material”. Adv. Mater. 2004, 16, 1897–1900.CrossRefGoogle Scholar
  5. [5]
    Chen, Z.; Waje, M.; Li, W.; Yan, Y. Supportless Pt and PtPd nanotubes as electrocatalysts for oxygen-reduction reactions. Angew. Chem. Int. Ed. 2007, 46, 4060–4063.CrossRefGoogle Scholar
  6. [6]
    Chen, J.; Saeki, F.; Wiley, B. J.; Cang, H.; Cobb, M. J.; Li, Z. Y.; Au, L.; Zhang, H.; Kimmey, M. B.; Li, X. D.; Xia, Y. Gold nanocages: Bioconjugation and their potential use as optical imaging contrast agents. Nano Lett. 2005, 5, 473–477.CrossRefPubMedADSGoogle Scholar
  7. [7]
    Talley, C. E.; Jackson, J. B.; Oubre, C.; Grady, N. K.; Hollars, C. W.; Lane, S. M.; Huser, T. R.; Nordlander, P.; Halas, N. J. Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates. Nano Lett. 2005, 5, 1569–1574.CrossRefPubMedADSGoogle Scholar
  8. [8]
    Hirsch, L. R.; Stafford, R. J.; Bankson, J. A.; Sershen, S. R.; Rivera, B.; Price, R. E.; Hazle, J. D.; Halas, N. J.; West, J. L. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci. USA 2003, 100, 13549–13554.CrossRefPubMedADSGoogle Scholar
  9. [9]
    Wu, G.; Mikhailovsky, A.; Khant, H. A.; Fu, C.; Chiu, W.; Zasadzinski, J. A. Remotely triggered liposome release by near-infrared light absorption via hollow gold nanoshells. J. Am. Chem. Soc. 2008, 130, 8175–8177.CrossRefPubMedGoogle Scholar
  10. [10]
    Gao, W.; Xia, X. H.; Xu, J. J.; Chen, H. Y. Three-dimensionally ordered macroporous gold structure as an efficient matrix for solid-state electrochemiluminescence of Ru(bpy)32+/TPA system with high sensitivity. J. Phys. Chem. C 2007, 111, 12213–12219.CrossRefGoogle Scholar
  11. [11]
    Dong, Y. P.; Cui, H.; Wang, C. M. Electrogenerated chemiluminescence of luminol on a gold-nanorod-modified gold electrode. J. Phys. Chem. B 2006, 110, 18408–18414.CrossRefPubMedGoogle Scholar
  12. [12]
    Yin, X. B.; Qi, B.; Sun, X.; Yang, X.; Wang, E. 4-(dimethylamino)butyric acid labeling for electrochemiluminescence detection of biological substances by increasing sensitivity with gold nanoparticle amplification. Anal. Chem. 2005, 77, 3525–3530.CrossRefPubMedGoogle Scholar
  13. [13]
    Laocharoensuk, R.; Sattayasamitsathit, S.; Burdick, J.; Kanatharana, P.; Thavarungkul, P.; Wang, J. Shapetailored porous gold nanowires: From nano barbells to nano step-cones. ACS Nano 2007, 1, 403–408.CrossRefPubMedGoogle Scholar
  14. [14]
    Shin, T. Y.; Yoo, S. H.; Park, S. Gold nanotubes with a nanoporous wall: Their ultrathin platinum coating and superior electrocatalytic activity toward methanol oxidation. Chem. Mater. 2008, 20, 5682–5686.CrossRefGoogle Scholar
  15. [15]
    Ji, C.; Searson, P. C. Synthesis of nanoporous gold nanowires. J. Phys. Chem. B 2003, 107, 4494–4499.CrossRefGoogle Scholar
  16. [16]
    Lahav, M.; Sehayek, T.; Vaskevich, A.; Rubinstein, I. Nanoparticle nanotubes. Angew. Chem. Int. Ed. 2003, 42, 5576–5579.CrossRefGoogle Scholar
  17. [17]
    Sehayek, T.; Lahav, M.; Popovitz-Biro, R.; Vaskevich, A.; Rubinstein, I. Template synthesis of nanotubes by room-temperature coalescence of metal nanoparticles. Chem. Mater. 2005, 17, 3743–3748.CrossRefGoogle Scholar
  18. [18]
    Sun, Y.; Xia, Y. Multiple-walled nanotubes made of metals. Adv. Mater. 2004, 16, 264 268.Google Scholar
  19. [19]
    Sun, Y.; Xia, Y. Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium. J. Am. Chem. Soc. 2004, 126, 3892–3901.CrossRefPubMedGoogle Scholar
  20. [20]
    Sun, Y.; Xia, Y. Shape-controlled synthesis of gold and silver nanoparticles. Science 2002, 298, 2176–2179.CrossRefPubMedADSGoogle Scholar
  21. [21]
    Murphy, C. J.; Sau, T. K.; Gole, A.; Orendorff, C. J. Surfactant-directed synthesis and optical properties of one-dimensional plasmonic metallic nanostructures. MRS Bull. 2005, 30, 349–355.Google Scholar
  22. [22]
    Shibata, T.; Bunker, B. A.; Zhang, Z.; Meisel, D.; Vardeman, C. F. II; Gezelter, J. D. Size-dependent spontaneous alloying of Au-Ag nanoparticles. J. Am. Chem. Soc. 2002, 124, 11989–11996.CrossRefPubMedGoogle Scholar
  23. [23]
    Kim, F.; Connor, S.; Song, H.; Kuykendall, T.; Yang, P. Platonic gold nanocrystals. Angew. Chem. Int. Ed. 2004, 43, 3673–3677.CrossRefGoogle Scholar
  24. [24]
    Seo, D.; Park, J. C.; Song, H. Polyhedral gold nanocrystals with O h symmetry: From octahedra to cubes. J. Am. Chem. Soc. 2006, 128, 14863–14870.CrossRefPubMedGoogle Scholar
  25. [25]
    Sosa, I. O.; Noguez, C.; Barrera, R. G. Optical properties of metal nanoparticles with arbitrary shapes. J. Phys. Chem. B 2003, 107, 6269 6275.CrossRefGoogle Scholar
  26. [26]
    Volkert, C. A.; Lilleodden, E. T.; Kramer, D.; Weissmüller, J. Approaching the theoretical strength in nanoporous Au. Appl. Phys. Lett. 2006, 89, 061920.Google Scholar
  27. [27]
    Fähnrich, K. A.; Pravda, M.; Guilbault, G. G. Recent applications of electrogenerated chemiluminescence in chemical analysis. Talanta 2001, 54, 531–559.CrossRefPubMedGoogle Scholar
  28. [28]
    Xu, X. H.; Bard, A. J. Electrogenerated chemiluminescence. 55. Emission from adsorbed Ru(bpy)32+ on graphite, platinum, and gold. Langmuir 1994, 10, 2409–2414.CrossRefGoogle Scholar
  29. [29]
    Ding, Z.; Quinn, B. M.; Haram, S. K.; Pell, L. E.; Korgel, B. A.; Bard, A. J. Electrochemistry and electrogenerated chemiluminescence from silicon nanocrystal quantum dots. Science 2002, 296, 1293–1297.CrossRefPubMedADSGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.School of Chemistry and Chemical Engineering, Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of EducationShandong UniversityJinanChina

Personalised recommendations