Nano Research

, Volume 2, Issue 4, pp 336–342 | Cite as

Chemical self-assembly of graphene sheets

  • Hailiang Wang
  • Xinran Wang
  • Xiaolin Li
  • Hongjie Dai
Open Access
Research Article

Abstract

Chemically derived and noncovalently functionalized graphene sheets (GS) were found to self-assemble onto patterned gold structures via electrostatic interactions between the functional groups and the gold surfaces. This afforded regular arrays of single graphene sheets on large substrates, which were characterized by scanning electron microscopy (SEM), Auger microscopy imaging, and Raman spectroscopy. This represents the first time that self-assembly has been used to produce on-substrate and fully-suspended graphene electrical devices. Molecular coatings on the GS were removed by high current “electrical annealing”, which restored the high electrical conductance and Dirac point of the GS. Molecular sensors for highly sensitive gas detection using the self-assembled GS devices are demonstrated.

Keywords

Chemically derived graphene sheets self-assembly graphene devices electrical annealing 

Supplementary material

12274_2009_9031_MOESM1_ESM.pdf (1.5 mb)
Supplementary material, approximately 1.46 MB.

References

  1. [1]
    Fan, S. S.; Chapline, M. G.; Franklin, N. R.; Tombler, T. W.; Cassell, A. M.; Dai, H. J. Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 1999, 283, 512–514.PubMedCrossRefADSGoogle Scholar
  2. [2]
    Huang, M. H.; Mao, S.; Feick, H.; Yan, H. Q.; Wu, Y. Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. D. Room-temperature ultraviolet nanowire nanolasers. Science 2001, 292, 1897–1899.PubMedCrossRefADSGoogle Scholar
  3. [3]
    Liu, Y. L.; Li, H. X.; Tu, D. Y.; Ji, Z. Y.; Wang, C. S.; Tang, Q. X.; Liu, M.; Hu, W. P.; Liu, Y. Q.; Zhu, D. B. Controlling the growth of single crystalline nanoribbons of copper tetracyanoquinodimethane for the fabrication of devices and device arrays. J. Am. Chem. Soc. 2006, 128, 12917–12922.PubMedCrossRefGoogle Scholar
  4. [4]
    Dai, H. Carbon nanotubes: synthesis, integration, and properties. Acc. Chem. Res. 2002, 35, 1035–1044.PubMedCrossRefGoogle Scholar
  5. [5]
    Zhang, Y. B.; Tan, Y. W.; Stormer, H. L.; Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 2005, 438, 201–204.PubMedCrossRefADSGoogle Scholar
  6. [6]
    Li, X. L.; Wang, X. R.; Zhang, L.; Lee, S. W.; Dai, H. J. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 2008, 319, 1229–1232.PubMedCrossRefADSGoogle Scholar
  7. [7]
    Wang, X. R.; Ouyang, Y. J.; Li, X. L.; Wang, H. L.; Guo, J.; Dai, H. J. Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys. Rev. Lett. 2008, 100, 206803.Google Scholar
  8. [8]
    Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652–655.PubMedCrossRefADSGoogle Scholar
  9. [9]
    Wang, X.; Zhi, L. J.; Müllen, K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 2008, 8, 323–327.PubMedCrossRefGoogle Scholar
  10. [10]
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.PubMedCrossRefADSGoogle Scholar
  11. [11]
    Sutter, P. W.; Flege, J; Sutter, E. A. Epitaxial graphene on ruthenium. Nat. Mater. 2008, 7, 406–411.PubMedCrossRefADSGoogle Scholar
  12. [12]
    Li, D.; Müller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 2008, 3, 101–105.PubMedCrossRefADSGoogle Scholar
  13. [13]
    Gomez-Navarro, C.; Weitz, R. T.; Bittner, A. M.; Scolari, M.; Mews, A.; Burghard, M.; Kern, K. Electronic transport properties of individual chemically reduced graphene xxide sheets. Nano Lett. 2007, 7, 3499–3503.PubMedCrossRefGoogle Scholar
  14. [14]
    Li, X. L.; Zhang, G. Y.; Bai, X. D.; Sun, X. M; Wang, X. R.; Wang, E. G.; Dai, H. J. Highly conducting graphene sheets and Langmuir Blodgett films. Nat. Nanotechnol. 2008, 3, 538–542.PubMedCrossRefGoogle Scholar
  15. [15]
    Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y. Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558–1565.CrossRefGoogle Scholar
  16. [16]
    Wei, Z. Q.; Barlow, D. E.; Sheehan, P. E. The assembly of single-layer graphene oxide and graphene using molecular templates. Nano Lett. 2008, 8, 3141–3145.PubMedCrossRefGoogle Scholar
  17. [17]
    Liu, Z. H.; Wang, Z. M.; Yang, X. J.; Ooi, K. Intercalation of organic ammonium ions into layered graphite oxide. Langmuir 2002, 18, 4926–4932.CrossRefGoogle Scholar
  18. [18]
    Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S.; Geim, A. K. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.Google Scholar
  19. [19]
    Eda, G.; Fanchini, G.; Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 2008, 3, 270–274.PubMedCrossRefGoogle Scholar
  20. [20]
    Chen, S. M.; Liu, Y. D.; Wu, G. Z. Stabilized and size-tunable gold nanoparticles formed in a quaternary ammonium-based room-temperature ionic liquid under γ-irradiation Nanotechnology 2005, 16, 2360–2364.CrossRefADSGoogle Scholar
  21. [21]
    Tymosiak-Zieliska, A.; Borkowska, Z. Interfacial properties of polycrystalline gold electrodes in tetraalkylammonium electrolytes. Electrochim. Acta 2001, 46, 3073–3082.CrossRefGoogle Scholar
  22. [22]
    Biggs, S.; Mulvaney, P.; Zukoski, C. F.; Grieser, F. Study of anion adsorption at the gold-aqueous solution interface by atomic force microscopy. J. Am. Chem. Soc. 1994, 116, 9150–9157.CrossRefGoogle Scholar
  23. [23]
    Bockris, J. O’M.; Paik, W. K.; Genshaw, M. A. Adsorption of anions at the solid-solution interface. Ellipsometric study J. Phys. Chem. 1970, 74, 4266–4275.CrossRefGoogle Scholar
  24. [24]
    Moser, J.; Barreiro, A.; Bachtold, A. Current-induced cleaning of graphene. Appl. Phys. Lett. 2007, 91, 163513.Google Scholar
  25. [25]
    Garcia-Sanchez, D.; van der Zande, A. M.; San Paulo, A.; Lassagne, B.; McEuen, P. L.; Bachtold, A. Imaging mechanical vibrations in suspended graphene sheets. Nano Lett. 2008, 8, 1399–1403.PubMedCrossRefGoogle Scholar
  26. [26]
    Gómez-Navarro, C.; Burghard, M.; Kern, K. Elastic properties of chemically derived single graphene sheets. Nano Lett. 2008, 8, 2045–2049.PubMedCrossRefGoogle Scholar
  27. [27]
    Bunch, J. S.; van der Zande, A. M.; Verbridge, S. S.; Frank, I. W.; Tanenbaum, D. M.; Parpia, J. M.; Craighead, H. G.; McEuen, P. L. Electromechanical resonators from graphene sheets. Science 2007, 315, 490–493.PubMedCrossRefADSGoogle Scholar
  28. [28]
    Miao, F.; Wijeratne, S.; Zhang, Y.; Coskun, U.; Bao, W.; Lau, C. N. Phase-coherent transport in graphene quantum billiards. Science 2007, 317, 1530–1533.PubMedCrossRefADSGoogle Scholar
  29. [29]
    Kong, J.; Franklin, N.; Zhou, C. W.; Chapline, M. G.; Pan, S.; Cho, K. J.; Dai, H. J. Nanotube molecular wires as chemical sensors. Science 2000, 287, 622–625.PubMedCrossRefADSGoogle Scholar
  30. [30]
    Chen, R. J.; Bangsaruntip, S.; Drouvalakis, K. A.; Kam, N. W. S.; Shim, M.; Li, Y. M.; Kim, W.; Utz, P. J.; Dai, H. J. Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc. Natl. Acad. Sci. USA. 2003, 100, 4984–4989.PubMedCrossRefADSGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH 2009

Authors and Affiliations

  • Hailiang Wang
    • 1
  • Xinran Wang
    • 1
  • Xiaolin Li
    • 1
  • Hongjie Dai
    • 1
  1. 1.Department of Chemistry and Laboratory for Advanced MaterialsStanford UniversityStanfordUSA

Personalised recommendations