Nano Research

, Volume 2, Issue 4, pp 306–320 | Cite as

Mesoflowers: A new class of highly efficient surface-enhanced Raman active and infrared-absorbing materials

  • Panikkanvalappil Ravindranathan Sajanlal
  • Thalappil Pradeep
Open Access
Research Article


A method for the synthesis of a new class of anisotropic mesostructured gold material, which we call “mesoflowers”, is demonstrated. The mesoflowers, unsymmetrical at the single particle level, resemble several natural objects and are made up of a large number of stems with unusual pentagonal symmetry. The mesostructured material has a high degree of structural purity with star-shaped, nano-structured stems. The mesoflowers were obtained in high yield, without any contaminating structures and their size could be tuned from nano- to meso-dimensions. The dependence of various properties of the mesoflowers on their conditions of formation was studied. The near-infrared-infrared (NIR-IR) absorption exhibited by the mesoflowers has been used for the development of infrared filters. Using a prototypical device, we demonstrated the utility of the gold mesoflowers in reducing the temperature rise in an enclosure exposed to daylight in peak summer. These structures showed a high degree of surface-enhanced Raman scattering (SERS) activity compared to spherical analogues. SERS-based imaging of a single mesoflower is demonstrated. The high SERS activity and NIR-IR absorption property open up a number of exciting applications in diverse areas.


Mesoflowers gold nanoparticles seed-mediated growth IR absorption surface-enhanced Raman scattering (SERS) 

Supplementary material

12274_2009_9028_MOESM1_ESM.pdf (1.6 mb)
Supplementary material, approximately 1.57 MB.


  1. [1]
    Xiao, Z. -L.; Han, C. Y.; Kwok, W. -K.; Wang, H. -H.; Welp, U.; Wang, J.; Crabtree. G. W. Tuning the architecture of mesostructures by electrodeposition. J. Am. Chem. Soc. 2004, 126, 2316–2317.PubMedCrossRefGoogle Scholar
  2. [2]
    Penner, R. M. Mesoscopic metal particles and wires by electrodeposition. J. Phys. Chem. B 2002, 106, 3339–3353.CrossRefGoogle Scholar
  3. [3]
    Sau, T. K.; Murphy, C. J. Seeded high yield synthesis of short Au nanorods in aqueous solution. Langmuir 2004, 20, 6414–6420.PubMedCrossRefGoogle Scholar
  4. [4]
    Sau, T. K.; Gole, A. M.; Orendorff, C. J.; Gao, J.; Gou, L.; Hunyadi, S. E.; Murphy, C. J. Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. J. Phys. Chem. B 2005, 109, 13857–13870.PubMedCrossRefGoogle Scholar
  5. [5]
    Perez-Juste, J.; Pastorìza-Santos, I.; Liz-Marzán, L. M.; Mulvaney, P. Gold nanorods: Synthesis, characterization and applications. Coord. Chem. Rev. 2005, 249, 1870–1901.CrossRefGoogle Scholar
  6. [6]
    Millstone, J. E.; Park, S.; Shuford, K. L.; Qin, L.; Schatz, G. C.; Mirkin, C. A. Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms. J. Am. Chem. Soc. 2005, 127, 5312–5313.PubMedCrossRefGoogle Scholar
  7. [7]
    Sajanlal, P. R.; Pradeep, T. Electric-field-assisted growth of highly uniform and oriented gold nanotriangles on conducting glass substrates. Adv. Mater. 2008, 20, 980–983.CrossRefGoogle Scholar
  8. [8]
    Seong Ah, D. C.; Yun, Y. J.; Park, H. J.; Kim, W. J.; Ha, D. H.; Yun, W. S. Size-controlled synthesis of machinable single crystalline gold nanoplates. Chem. Mater. 2005, 17, 5558–5561.CrossRefGoogle Scholar
  9. [9]
    Jin, R.; Cao, Y.; Mirkin, C. A.; Kelly, K. L.; Schatz, G. C.; Zheng, J. G. Photoinduced conversion of silver nanospheres to nanoprisms. Science 2001, 294, 1901–1903.PubMedCrossRefADSGoogle Scholar
  10. [10]
    Hu, J.; Odom, T. W.; Lieber, C. M. Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes. Acc. Chem. Res. 1999, 32, 435–445.CrossRefGoogle Scholar
  11. [11]
    Wiley, B.; Sun, Y.; Mayers, B.; Xia. Y. Shape-controlled synthesis of metal nanostructures: The case of silver. Chem. Eur. J. 2005, 11, 454–463.CrossRefGoogle Scholar
  12. [12]
    Hao, E.; Bailey, R. C.; Schatz, G. C.; Hupp, J. T.; Li, S. Synthesis and optical properties of “branched” gold nanocrystals. Nano Lett. 2004, 4, 327–330.CrossRefGoogle Scholar
  13. [13]
    Nehl, C. L.; Liao, H.; Hafner, J. H. Optical properties of star-shaped gold nanoparticles. Nano Lett. 2006, 6, 683–688.PubMedCrossRefGoogle Scholar
  14. [14]
    Hu, J.; Zhang, Y.; Liu, B.; Liu, J.; Zhou, H.; Xu, Y.; Jiang, Y. Y.; Yang, Z.; Tian, Z. Synthesis and properties of tadpole-shaped gold nanoparticles. J. Am. Chem. Soc. 2004, 126, 9470–9471.PubMedCrossRefGoogle Scholar
  15. [15]
    Nishida, N.; Shibu, E. S.; Yao, H.; Oonishi, T.; Kimura, K.; Pradeep, T. Fluorescent gold nanoparticle superlattices. Adv. Mater. 2008, 20, 4719–4723.CrossRefGoogle Scholar
  16. [16]
    Yang, Y.; Liu, S.; Kimura, K. Superlattice formation from polydisperse Ag nanoparticles by a vapor-diffusion method. Angew. Chem. Int. Ed. 2006, 45, 5662–5665.CrossRefGoogle Scholar
  17. [17]
    Pastoriza-Santos, I.; Liz-Marzán, L. M. Synthesis of silver nanoprisms in DMF. Nano Lett. 2002, 2, 903–905.CrossRefGoogle Scholar
  18. [18]
    Liu, J.; Cankurtaran, B.; Wieczorek, L.; Ford, M. J.; Cortie, M. Anisotropic optical properties of semitransparent coatings of gold nanocaps. Adv. Funct. Mater. 2006, 16, 1457–1461.CrossRefGoogle Scholar
  19. [19]
    Maillard, M.; Giorgio, S.; Pileni, M. P. Silver nanodisks. Adv. Mater. 2002, 14, 1084–1086.CrossRefGoogle Scholar
  20. [20]
    El-Sayed, M. A. Some interesting properties of metals confined in time and nanometer space of different shapes. Acc. Chem. Res. 2001, 34, 257–264.PubMedCrossRefGoogle Scholar
  21. [21]
    Sreeprasad, T. S.; Samal, A. K.; Pradeep, T. Body- or tip-controlled reactivity of gold nanorods and their conversion to particles through other anisotropic structures. Langmuir 2007, 23, 9463–9471.PubMedCrossRefGoogle Scholar
  22. [22]
    Maier, S. A.; Brongersma, M. L.; Kik, P. G.; Meltzer, S.; Requicha, A. A. G.; Atwater, H. A. Plasmonics—A route to nanoscale optical devices. Adv. Mater. 2001, 13, 1501–1505.CrossRefGoogle Scholar
  23. [23]
    Shankar, S. S.; Rai, A.; Ankamwar, B.; Singh, A.; Ahmad, A.; Sastry, M. Biological synthesis of triangular gold nanoprisms. Nat. Mater. 2004, 3, 482–488.PubMedCrossRefADSGoogle Scholar
  24. [24]
    O’Neal, D. P.; Hirsch, L. R.; Halas, N. J.; Payne, J. D.; West, J. L. Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Canc. Lett. 2004, 209, 171–176.CrossRefGoogle Scholar
  25. [25]
    Sajanlal, P. R.; Sreeprasad, T. S.; Nair, A. S.; Pradeep, T. Wires, plates, flowers, needles, and core-shells: Diverse nanostructures of gold using polyaniline templates. Langmuir 2008, 24, 4607–4614.PubMedCrossRefGoogle Scholar
  26. [26]
    Jena, B. K.; Raj, C. R. Seedless, surfactantless room temperature synthesis of single crystalline fluorescent gold nanoflowers with pronounced SERS and electrocatalytic activity. Chem. Mater. 2008, 20, 3546–3548.CrossRefGoogle Scholar
  27. [27]
    Bakshi, M. S.; Possmayer, F.; Petersen, N. O. Role of different phospholipids in the synthesis of pearl-necklace-type gold-silver bimetallic nanoparticles as bioconjugate materials. J. Phys. Chem. C 2007, 111, 14113–14124.CrossRefGoogle Scholar
  28. [28]
    Li, Y.; Shi, G. Electrochemical growth of two-dimensional gold nanostructures on a thin polypyrrole film modified ITO electrode. J. Phys. Chem. B 2005, 109, 23787–23793.PubMedCrossRefGoogle Scholar
  29. [29]
    Jena, B. K.; Raj, C. R. Synthesis of flower-like gold nanoparticles and their electrocatalytic activity towards the oxidation of methanol and the reduction of oxygen. Langmuir 2007, 23, 4064–4670.PubMedCrossRefGoogle Scholar
  30. [30]
    Wang, W.; Cui, H. Chitosan-luminol reduced gold nanoflowers: From one-pot synthesis to morphology-dependent SPR and chemiluminescence sensing. J. Phys. Chem. C 2008, 112, 10759–10766.CrossRefGoogle Scholar
  31. [31]
    Qian, L.; Yang, X. Polyamidoamine dendrimersassisted electrodeposition of gold-platinum bimetallic nanoflowers. J. Phys. Chem. B 2006, 110, 16672–16678.PubMedCrossRefGoogle Scholar
  32. [32]
    Yang, Z.; Lin, Z. H.; Tang, C. Y.; Chang, H. T. Preparation and characterization of flower-like gold nanomaterials and iron oxide/gold composite nanomaterials. Nanotechnology 2007, 18, 255606.Google Scholar
  33. [33]
    Zijlstra, P.; Bullen, C.; Chon, J. W. M.; Gu, M. High-temperature seedless synthesis of gold nanorods. J. Phys. Chem. B 2006, 110, 19315–19318.PubMedCrossRefGoogle Scholar
  34. [34]
    Fleming, D. A.; Williams, M. E. Size-controlled synthesis of gold nanoparticles via high-temperature reduction. Langmuir 2004, 20, 3021–3023.PubMedCrossRefGoogle Scholar
  35. [35]
    Huang, W. -L.; Chen, C. -H.; Huang, M. H. Investigation of the growth process of gold nanoplates formed by thermal aqueous solution approach and the synthesis of ultra-small gold nanoplates. J. Phys. Chem. C 2007, 111, 2533–2538.CrossRefGoogle Scholar
  36. [36]
    Park, H. J.; Ah, C. S.; Kim, W. -J.; Choi, I. S.; Lee, K. P. Temperature-induced control of aspect ratio of gold nanorods. J. Vac. Sci. Technol. A 2006, 24, 1323–1326.CrossRefGoogle Scholar
  37. [37]
    Elechiguerra, J. L.; Reyes-Gasga, J.; Yacaman, M. J. The role of twinning in shape evolution of anisotropic noble metal nanostructures. J. Mater. Chem. 2006, 16, 3906–3919.CrossRefGoogle Scholar
  38. [38]
    Chen, C.; Gao, Y. Electrosyntheses of poly(neutral red), a polyaniline derivative. Electrochim. Acta, 2007, 52, 3143–3148.CrossRefGoogle Scholar
  39. [39]
    Wang, H. Y.; Mu, S. L. Bioelectrochemical characteristics of cholesterol oxidase immobilized in a polyaniline film. Sens. Actuators B 1999, 56, 22–30.CrossRefGoogle Scholar
  40. [40]
    Malinsky, M. D.; Kelly, K. L.; Schatz, G. C.; Van Duyne, R. P. Nanosphere lithography: Effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles. J. Phys. Chem. B 2001, 105, 2343–2350.CrossRefGoogle Scholar
  41. [41]
    Draine, B. T.; Flatau, P. J. Discrete-dipole approximation for scattering calculations. J. Opt. Soc. Am. A 1994, 11, 1491–1499.CrossRefADSGoogle Scholar
  42. [42]
    Jain, P. K.; Lee, K. S.; El-Sayed, I. H.; El-Sayed, M. A. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine. J. Phys. Chem. B 2006, 110, 7238–7248.PubMedCrossRefGoogle Scholar
  43. [43]
    Xu, X.; Stevens, M.; Cortie, M. B. In situ precipitation of gold nanoparticles onto glass for potential architectural applications. Chem. Mater. 2004, 16, 2259–2266.CrossRefGoogle Scholar
  44. [44]
    Kumar, P. S.; Pastoriza-Santos, I.; Rodríguez-González, B.; García de Abajo, F. J.; Liz-Marzán, L. M. Highyield synthesis and optical response of gold nanostars. Nanotechnology 2008, 19, 15606.CrossRefGoogle Scholar
  45. [45]
    Turkevich, J.; Stevenson, P. L.; Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 1951, 11, 55–75.CrossRefGoogle Scholar
  46. [46]
    Kumar, G. V. P.; Shruthi, S.; Vibha, B.; Reddy, B. A. A.; Kundu, T. K.; Narayana, C. Hot spots in Ag core-Au shell nanoparticles potent for surface-enhanced Raman scattering studies of biomolecules. J. Phys. Chem. C 2007, 111, 4388–4392.CrossRefGoogle Scholar
  47. [47]
    Hao, E.; Schatz, G. C. Electromagnetic fields around silver nanoparticles and dimers. J. Chem. Phys. 2004, 120, 357–366.PubMedCrossRefADSGoogle Scholar
  48. [48]
    Hao, F.; Nehl, C. L.; Hafner, J. H.; Nordlander, P. Plasmon resonances of a gold nanostar. Nano Lett. 2007, 7, 729–732.PubMedCrossRefGoogle Scholar
  49. [49]
    Qin, L.; Zou, S.; Xue, C.; Atkinson, A.; Schatz, G. C.; Mirkin, C. A. Designing, fabricating, and imaging Raman hot spots. Proc. Natl. Acad. Sci. USA 2006, 103, 13300–13303.PubMedCrossRefADSGoogle Scholar
  50. [50]
    Subramaniam, C.; Chakrabarti, J.; Pradeep, T. Flow-induced transverse electrical potential across an assembly of gold nanoparticles. Phys. Rev. Lett. 2005, 95, 164501.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH 2009

Authors and Affiliations

  • Panikkanvalappil Ravindranathan Sajanlal
    • 1
  • Thalappil Pradeep
    • 1
  1. 1.DST Unit on Nanoscience (DST UNS), Department of Chemistry and Sophisticated Analytical Instrument FacilityIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations