Nano Research

, Volume 2, Issue 2, pp 143–150 | Cite as

Superhydrophobic surfaces produced by applying a self-assembled monolayer to silicon micro/nano-textured surfaces

  • Yong Song
  • Rahul Premachandran Nair
  • Min ZouEmail author
  • Yongqiang Wang
Open Access
Research Article


A novel way of producing superhydrophobic surfaces by applying a self-assembled monolayer (SAM) to silicon micro/nano-textured surfaces is presented in this paper. The micro/nano-textured surfaces on silicon substrates were generated by the aluminum-induced crystallization (AIC) of amorphous silicon (a-Si) technique. Octadecyltrichlorosilane (OTS) SAMs were then applied to the textured surfaces by dip coating. The topography and wetting properties of the resulting surfaces were characterized using scanning electron microscopy (SEM) and a video-based contact angle measurement system. The results show that by introducing OTS SAMs on the silicon micro/nano-textured surfaces, superhydrophobic surfaces with water contact angles (WCAs) of 155° were obtained, as compared to the WCAs of OTS-modified smooth silicon surfaces of about 112°. Surface topography was found to directly influence the WCA as predicted by the Cassie-Baxter model.


Superhydrophobic wetting property micro/nano-textured surfaces octadecyltrichlorosilane self-assembled monolayer aluminum-induced crystallization of amorphous silicon 


  1. [1]
    Furstner, R.; Barthlott, W.; Neinhuis, C.; Walzel, P. Wetting and self-cleaning properties of artificial superhydrophobic surfaces. Langmuir 2005, 21, 956–961.CrossRefPubMedGoogle Scholar
  2. [2]
    Zhu, L.; Xiu, Y.; Xu, J.; Hess, D.W.; Wong, C. P. Optimizing geometrical design of superhydrophobic surfaces for prevention of microelectromechanical system (MEMS) stiction. In Proceedings of the 56th Electronic Components and Technology Conference (ECTC), San Diego, USA, 30 May 2 June, 2006, pp. 1129–1135.Google Scholar
  3. [3]
    Truesdell, R.; Mammoli, A.; Vorobieff, P.; van Swol, F.; Brinker, C. J. Drag reduction on a patterned superhydrophobic surface. Phys. Rev. Lett. 2006, 97, 044504.Google Scholar
  4. [4]
    Barthlott, W.; Neinhuis, C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 1997, 202, 1–8.CrossRefGoogle Scholar
  5. [5]
    Nosonovsky, M.; Bhushan, B. Roughness-induced superhydrophobicity: A way to design non-adhesive surfaces. J. Phys.: Condens. Matter 2008, 20, 225009.Google Scholar
  6. [6]
    Li, J.; Xu, J.; Fan, L.; Wong, C. P. Lotus effect coating and its application for microelectromechanical systems stiction prevention. In Proceedings of the 54th Electronic Components and Technology Conference (ECTC), Las Vegas, USA, 1–4 June, 2004, pp. 943–947.Google Scholar
  7. [7]
    Komvopoulos, K. Adhesion and friction force in microelectromechanical systems: Mechanisms, measurement, surface modification techniques, and adhesion theory. J. Adhes. Sci. Technol. 2003, 17, 477–517.CrossRefGoogle Scholar
  8. [8]
    Maboudian, R.; Howe, R. T. Critical review: Adhesion in surface micromechanical structures. J. Vac. Sci. Technol. 1997, B15, 1–20.Google Scholar
  9. [9]
    Tambe, N.; Bhushan, B. Nanotribological characterization of self-assembled monolayers deposited on silicon and aluminum substrates. Nanotechnology 2005, 16, 1549–1558.CrossRefGoogle Scholar
  10. [10]
    Feng, L.; Li, S. H.; Li, Y. H.; Li, H. J.; Zhang, L. J.; Zhai, J.; Song, Y. L.; Liu, B. Q.; Jing, L.; Zhu, D. B. Super-hydrophobic surfaces: From natural to artificial. Adv. Mater. 2002, 14, 1857–1860.CrossRefGoogle Scholar
  11. [11]
    Cao, L. L.; Price, T. P.; Weiss, M.; Gao, D. Super water- and oil-repellent surfaces on intrinsically hydrophilic and oleophilic porous silicon films. Langmuir 2008, 24, 1640–1643.CrossRefPubMedGoogle Scholar
  12. [12]
    Wu, X. F; Shi, G. Q. Production and characterization of stable superhydrophobic surfaces based on copper hydroxide nanoneedles mimicking the legs of water striders. J. Phys. Chem. B 2006, 110, 11247–11252.CrossRefPubMedGoogle Scholar
  13. [13]
    Liu, B.; He, Y. N.; Fan, Y.; Wang, X. G. Fabricating super-hydrophobic lotus-leaf-like surfaces through softlithographic imprinting. Macromol. Rapid Commun. 2006, 27, 1859–1864.CrossRefGoogle Scholar
  14. [14]
    Song, Y.; Zou, M. Superhydrophobic surfaces by dynamic nanomasking and deep reactive ion etching. Proc. IMechE, Part N: J. Nanoeng. Nanosystems 2007, 221, 41–48.CrossRefGoogle Scholar
  15. [15]
    Liu, H.; Ahmed, I.; Scherge, M. Microtribological properties of silicon and silicon coated with diamond like carbon, octadecyltrichlorosilane and stearic acid cadmium salt films: A comparative study. Thin Solid Films 2001, 381, 135–142.CrossRefADSGoogle Scholar
  16. [16]
    Ding, J.; Wong, P.; Yang, J. Friction and fracture properties of polysilicon coated with self-assembled monolayers. Wear 2006, 260, 209–214.CrossRefGoogle Scholar
  17. [17]
    Fu, Y.; Ding, J.; Yang, J. Investigation on the properties of anti-adhesive films on MEMS surfaces by AFM. Nongye Jixie Xuebao/Trans. Chin. Soc. Agric. Mach. 2006, 37, 182–184.Google Scholar
  18. [18]
    Nast, O.; Hartmann, A. J. Influence of interface and Al structure on layer exchange during aluminum-induced crystallization of amorphous silicon. J. Appl. Phys. 2000, 88, 716–724.CrossRefADSGoogle Scholar
  19. [19]
    Schneider, J.; Heimburger, R.; Klein, J.; Muske, M.; Gall, S.; Fuhs, W. Aluminum-induced crystallization of amorphous silicon: Influence of temperature profiles. Thin Solid Films 2005, 487, 107–112.CrossRefADSGoogle Scholar
  20. [20]
    Qi, G. J.; Zhang, S.; Tang, T. T.; Li, J. F.; Sun, X. W.; Zeng, X. T. Experimental study of aluminum-induced crystallization of amorphous silicon thin films. Surf. Coat. Tech. 2005, 198, 300–303.CrossRefGoogle Scholar
  21. [21]
    Nast, O.; Brehme, S.; Pritchard, S.; Aberle, A. G.; Wenham, S. R. Aluminum-induced crystallization of silicon on glass for thin-film solar cells. Sol. Energy Mat. S. C. 2001, 65, 385–392.CrossRefGoogle Scholar
  22. [22]
    Zou, M.; Cai, L.; Brown, W. Nano-aluminum-induced low-temperature crystallization of PECVD amorphous silicon. Electrochem. Solid-State Lett. 2005, 8, G103–G105.CrossRefGoogle Scholar
  23. [23]
    Gall, S.; Muske, M.; Sieber, I.; Nast, O.; Fuhs, W. Aluminum-induced crystallization of amorphous silicon. J. Non-Cryst. Solids 2002, 299, 741–745.CrossRefADSGoogle Scholar
  24. [24]
    Zou, M.; Cai, L.; Dorey, S. Silicon nanowires by aluminum-induced crystallization of amorphous silicon. Electrochem. Solid-State Lett. 2006, 9, G133–G135.CrossRefGoogle Scholar
  25. [25]
    Mirji, S. A. Octadecyltrichlorosilane adsorption kinetics on Si(100)/SiO2 surfaces: Contact angle, AFM, FTIR and XPS analysis. Surf. Interface Anal. 2006, 38, 158–165.CrossRefGoogle Scholar
  26. [26]
    Wang, Y.; Lieberman, M. Growth of ultrasmooth octadecyltrichlorosilane self-assembled monolayers on SiO2. Langmuir 2003, 19, 1159–1167.CrossRefGoogle Scholar
  27. [27]
    Cassie, A. B. D.; Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 1944, 40, 546–551.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer Berlin Heidelberg 2009

Authors and Affiliations

  • Yong Song
    • 1
  • Rahul Premachandran Nair
    • 1
  • Min Zou
    • 1
    Email author
  • Yongqiang Wang
    • 2
  1. 1.Department of Mechanical EngineeringUniversity of ArkansasFayettevilleUSA
  2. 2.Ocean NanoTech, LLC.SpringdaleUSA

Personalised recommendations