Nano Research

, Volume 2, Issue 2, pp 130–134 | Cite as

Bi2S3 nanotubes: Facile synthesis and growth mechanism

  • Dingsheng Wang
  • Chenhui Hao
  • Wen Zheng
  • Xiaoling Ma
  • Deren Chu
  • Qing Peng
  • Yadong LiEmail author
Open Access
Research Article


Synthesis of tubular nanomaterials has become a prolific area of investigation due to their wide range of applications. A facile solution-based method has been designed to fabricate uniform Bi2S3 nanotubes with average size of 20 nm × 160 nm using only bismuth nitrate (Bi(NO3)3·5H2O) and sulfur powder (S) as the reactants and octadecylamine (ODA) as the solvent. Powder X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), and energy dispersive spectroscopy (EDX) experiments were employed to characterize the resulting Bi2S3 nanotubes and the classic rolling mechanism was applied to explain their formation process.


Bi2S3 nanotubes solution-based synthesis rolling mechanism 


  1. [1]
    Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58.CrossRefADSGoogle Scholar
  2. [2]
    Tenne, R.; Margulis, L.; Genut, M.; Hodes, G. Polyhedral and cylindrical structures of tungsten disulphide. Nature 1992, 360, 444–446.CrossRefADSGoogle Scholar
  3. [3]
    Fan, S. S.; Chapline, M. G.; Franklin, N. R.; Tombler, T. W.; Cassell, A. M.; Dai, H. J. Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 1999, 283, 512–514.CrossRefPubMedADSGoogle Scholar
  4. [4]
    Huang, Y.; Duan, X. F.; Wei, Q. Q.; Lieber, C. M. Directed assembly of one-dimensional nanostructures into functional networks. Science 2001, 291, 630–633.CrossRefPubMedADSGoogle Scholar
  5. [5]
    Xia, Y. N.; Yang, P. D.; Sun, Y. G.; Wu, Y. Y.; Mayers, B.; Gates, B.; Yin, Y. D.; Kim, F.; Yan, Y. Q. One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 2003, 15, 353–389.CrossRefGoogle Scholar
  6. [6]
    Peng, H. L.; Xie, C.; Schoen, D. T.; Mcllwrath, K.; Zhang, X. F.; Cui, Y. Ordered vacancy compounds and nanotube formation in CulnSe2 CdS core-shell nanowires. Nano Lett. 2007, 7, 3734–3738.CrossRefADSGoogle Scholar
  7. [7]
    Wang, M. S.; Kaplan-Ashirl, I.; Wei, X. L.; Rosentsveig, R.; Wagner, H. D.; Tenne, R.; Peng, L. M. In situ TEM measurements of the mechanical properties and behavior of WS2 nanotubes. Nano Res. 2008, 1, 22–31.CrossRefGoogle Scholar
  8. [8]
    Cao, Q.; Rogers, J. A. Random networks and aligned arrays of single-walled carbon nanotubes for electronic device applications. Nano Res. 2008, 1, 259–272.CrossRefGoogle Scholar
  9. [9]
    Matsumoto, T.; Komatsu, T.; Arai, K.; Yamazaki, T.; Kijima, M.; Shimizu, H.; Takasawa, Y.; Nakamura, J. Reduction of Pt usage in fuel cell electrocatalysts with carbon nanotube electrodes. Chem. Commun. 2004, 840–841.Google Scholar
  10. [10]
    Cheng, F. Y.; Chen, J. Storage of hydrogen and lithium in inorganic nanotubes and nanowires. J. Mater. Res. 2006, 21, 2744–2757.CrossRefMathSciNetADSGoogle Scholar
  11. [11]
    Shimoda, H.; Gao, B.; Tang, X. P.; Kleinhammes, A.; Fleming, L.; Wu, Y.; Zhou, O. Lithium intercalation into opened single-wall carbon nanotubes: Storage capacity and electronic properties. Phys. Rev. Lett. 2002, 88, 015502.Google Scholar
  12. [12]
    Dominko, R.; Arcon, D.; Mrzel, A.; Zorko, A.; Cevc, P.; Venturini, P.; Gaberscek, M.; Remskar, M.; Mihailovic, D. Dichalcogenide nanotube electrodes for Li-ion batteries. Adv. Mater. 2002, 14, 1531–1534CrossRefGoogle Scholar
  13. [13]
    Wang, G. X.; Bewlay, S.; Yao, J.; Liu, H. K.; Dou, S. X. Tungsten disulfide nanotubes for lithium storage. Electrochem. Solid-State Lett. 2004, 7, A321–A323.CrossRefGoogle Scholar
  14. [14]
    Miller, B.; Heller, A. Semiconductor liquid junction solar cells based on anodic sulphide films. Nature 1976, 262, 680–681.CrossRefADSGoogle Scholar
  15. [15]
    Rabin, O.; Perez, J. M.; Grimm, J.; Wojtkiewicz, G.; Weissleder, R. An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles. Nat. Mater. 2006, 5, 118–122.CrossRefPubMedADSGoogle Scholar
  16. [16]
    Zhang, B.; Ye, X. C.; Hou, W. Y.; Zhao, Y.; Xie, Y. Biomolecule-assisted synthesis and electrochemical hydrogen storage of Bi2S3 flowerlike patterns with well-aligned nanorods. J. Phys. Chem. B 2006, 110, 8978–8985CrossRefPubMedGoogle Scholar
  17. [17]
    Li, L. S.; Sun, N. J.; Huang, Y. Y.; Qin, Y.; Zhao, N. N.; Gao, J. N.; Li, M. X.; Zhou, H. H.; Qi, L. M. Topotactic transformation of single-crystalline precursor discs into disc-like Bi2S3 nanorod networks. Adv. Funct. Mater. 2008, 18, 1194–1201.CrossRefGoogle Scholar
  18. [18]
    Ye, C. H.; Meng, G. W.; Jiang, Z.; Wang, Y. H.; Wang, G. Z.; Zhang, L. D. Rational growth of Bi2S3 nanotubes from quasi-two-dimensional precursors. J. Am. Chem. Soc. 2002, 124, 15180–15181.CrossRefPubMedGoogle Scholar
  19. [19]
    Ota, J. R.; Srivastava, S. K. Low temperature micelle-template assisted growth of Bi2S3 nanotubes. Nanotechnology 2005, 16, 2415–2419.CrossRefADSGoogle Scholar
  20. [20]
    Shen, X. P.; Yin, G.; Zhang, W. L.; Xu, Z. Synthesis and characterization of Bi2S3 faceted nanotube bundles. Solid State Commun. 2006, 140, 116–119.CrossRefADSGoogle Scholar
  21. [21]
    Jiang, J.; Yu, S. H.; Yao, W. T.; Ge, H.; Zhang, G. Z. Morphogenesis and crystallization of Bi2S3 nanostructures by an ionic liquid-assisted templating route: Synthesis, formation mechanism, and properties. Chem. Mater. 2005, 17, 6094–6100.CrossRefGoogle Scholar
  22. [22]
    Tang, J.; Alivisatos, A. P. Crystal splitting in the growth of Bi2S3. Nano Lett. 2006, 6, 2701–2706.CrossRefPubMedADSGoogle Scholar
  23. [23]
    Comor, M. I.; Dramicanin, M. D.; Rakocevic, Z.; Zec, S.; Nedeljkovic, J. M. Preparation of Bi2S3 quantum dots by dissolution of crystalline powder in acetonitrile. J. Mater. Sci. Lett. 1998, 17, 1401–1402.CrossRefGoogle Scholar
  24. [24]
    Li, Y. D.; Wang, J. W.; Deng, Z. X.; Wu, Y. Y.; Sun, X. M.; Yu, D. P.; Yang, P. D. Bismuth nanotubes: A rational low-temperature synthetic route. J. Am. Chem. Soc. 2001, 123, 9904–9905.CrossRefPubMedGoogle Scholar
  25. [25]
    Feldman, Y.; Wasserman, E.; Srolovitz, D. J.; Tenne, R. High-rate, gas-phase growth of MoS2 nested inorganic fullerenes and nanotubes. Science 1995, 267, 222–225.CrossRefPubMedADSGoogle Scholar
  26. [26]
    Chopra, N. G.; Luyken, R. J.; Cherrey, K.; Crespi, V. H.; Cohen, M. L.; Louie, S. G.; Zettl, A. Boron nitride nanotubes. Science 1995, 269, 966–967.CrossRefPubMedADSGoogle Scholar

Copyright information

© Tsinghua University Press and Springer Berlin Heidelberg 2009

Authors and Affiliations

  • Dingsheng Wang
    • 1
  • Chenhui Hao
    • 1
  • Wen Zheng
    • 1
  • Xiaoling Ma
    • 1
  • Deren Chu
    • 1
  • Qing Peng
    • 1
  • Yadong Li
    • 1
    Email author
  1. 1.Department of ChemistryTsinghua UniversityBeijingChina

Personalised recommendations