Nano Research

, Volume 2, Issue 2, pp 121–129 | Cite as

Improved peptidyl linkers for self-assembly of semiconductor quantum dot bioconjugates

  • Lorenzo Berti
  • Paola Serena D’Agostino
  • Kelly Boeneman
  • Igor L. MedintzEmail author
Open Access
Research Article


We demonstrate improved peptide linkers which allow both conjugation to biomolecules such as DNA and self-assembly with luminescent semiconductor quantum dots. A hexahistidine peptidyl sequence was generated by standard solid phase peptide synthesis and modified with the succinimidyl ester of iodoacetamide to yield a thiol-reactive iodoacetyl polyhistidine linker. The reactive peptide was conjugated to dye-labeled thiolated DNA which was utilized as a model target biomolecule. Agarose gel electrophoresis and fluorescence resonance energy transfer analysis confirmed that the linker allowed the DNA to self-assemble with quantum dots via metal-affinity driven coordination. In contrast to previous peptidyl linkers that were based on disulfide exchange and were thus labile to reduction, the reactive haloacetyl chemistry demonstrated here results in a more stable thioether bond linking the DNA to the peptide which can withstand strongly reducing environments such as the intracellular cytoplasm. As thiol groups occur naturally in proteins, can be engineered into cloned proteins, inserted into nascent peptides or added to DNA during synthesis, the chemistry demonstrated here can provide a simple method for self-assembling a variety of stable quantum dot bioconjugates.


Semiconductor quantum dot peptide DNA nanocrystal bioconjugation iodoacetyl sulfhydryl polyhistidine metal-affinity fluorescence fluorescence resonance energy transfer (FRET) 


  1. [1]
    Daniel, M. C.; Astruc, D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 2004, 104, 293–346.CrossRefPubMedGoogle Scholar
  2. [2]
    Medintz, I.; Uyeda, H.; Goldman, E.; Mattoussi, H., Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 2005, 4, 435–446.CrossRefPubMedADSGoogle Scholar
  3. [3]
    Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005, 307, 538–544.CrossRefPubMedADSGoogle Scholar
  4. [4]
    Alivisatos, P. The use of nanocrystals in biological detection. Nat. Biotechnol. 2004, 22, 47–52.CrossRefPubMedGoogle Scholar
  5. [5]
    Clapp, A. R.; Medintz, I. L.; Mattoussi, H. Forster resonance energy transfer investigations using quantumdot fluorophores. ChemPhysChem 2005, 7, 47–57.CrossRefGoogle Scholar
  6. [6]
    Sapsford, K. E.; Pons, T.; Medintz, I. L.; Mattoussi, H. Biosensing with luminescent semiconductor quantum dots. Sensors 2006, 6, 925–953.CrossRefGoogle Scholar
  7. [7]
    Sapsford, K. E.; Bradburne, C.; Detehanty, J. B.; Medintz, I. L. Sensors for detecting biological agents. Mater. Today 2008, 11, 38–49.CrossRefGoogle Scholar
  8. [8]
    Sapsford, K. E.; Berti, L.; Medintz, I. L. Materials for fluorescence resonance energy transfer analysis: Beyond traditional donor-acceptor combinations. Angew. Chem. Int. Ed. 2006, 45, 4562–4588.CrossRefGoogle Scholar
  9. [9]
    Medintz, I. Universal tools for biomolecular attachment to surfaces. Nat. Mater. 2006, 5, 842.CrossRefPubMedADSGoogle Scholar
  10. [10]
    Sapsford, K. E.; Pons, T.; Medintz, I. L.; Higashiya, S.; Brunel, F. M.; Dawson, P. E.; Mattoussi, H. Kinetics of metal-affinity driven self-assembly between proteins or peptides and CdSe ZnS quantum dots. J. Phys. Chem. C 2007, 111, 11528–11538.CrossRefGoogle Scholar
  11. [11]
    Medintz, I. L.; Clapp, A. R.; Mattoussi, H.; Goldman, E. R.; Fisher, B.; Mauro, J. M. Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nat. Mater. 2003, 2, 630–638.CrossRefPubMedADSGoogle Scholar
  12. [12]
    Delehanty, J. B.; Medintz, I. L.; Pons, T.; Brunel, F. M.; Dawson, P. E.; Mattoussi, H. Self-assembled quantum dot-peptide bioconjugates for selective intracellular delivery. Bioconj. Chem. 2006, 17, 920–927.CrossRefGoogle Scholar
  13. [13]
    Medintz, I. L.; Clapp, A. R.; Brunel, F. M.; Tiefenbrunn, T.; Uyeda, H. T.; Chang, E. L.; Deschamps, J. R.; Dawson, P. E.; Mattoussi, H. Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot-peptide conjugates. Nat. Mater. 2006, 5, 581–589.CrossRefPubMedADSGoogle Scholar
  14. [14]
    Goldman, E.; Medintz, I.; Whitley, J.; Hayhurst, A.; Clapp, A.; Uyeda, H.; Deschamps, J.; Lassman, M.; Mattoussi, H. A hybrid quantum dot-antibody fragment fluorescence resonance energy transfer-based TNT sensor. J. Am. Chem. Soc. 2005, 127, 6744–6751.CrossRefPubMedGoogle Scholar
  15. [15]
    Ipe, B. I.; Niemeyer, C. M. Nanohybrids composed of quantum dots and cytochrome P450 as photocatalysts, Angew. Chem. Int. Ed. 2006, 45, 504–507.CrossRefGoogle Scholar
  16. [16]
    Liu, W.; Howarth, M.; Greytak, A. B.; Zheng, Y.; Nocera, D. G.; Ting, A. Y.; Bawendi, M. G. Compact biocompatible quantum dots functionalized for cellular imaging. J. Am. Chem. Soc. 2008, 130, 1274–1284.CrossRefPubMedGoogle Scholar
  17. [17]
    Medintz, I. L.; Berti, L.; Pons, T.; Grimes, A. F.; English, D. S.; Alessandrini, A.; Facci, P.; H., M. A reactive peptidic linker for self-assembling hybrid quantum dot-DNA bioconjugates. Nano Lett. 2007, 7, 1741–1748.CrossRefPubMedADSGoogle Scholar
  18. [18]
    Mattoussi, H.; Mauro, J. M.; Goldman, E. R.; Anderson, G. P.; Sundar, V. C.; Mikulec, F. V.; Bawendi, M. G. Selfassembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein, J. Am. Chem. Soc. 2000, 122, 12142–12150.CrossRefGoogle Scholar
  19. [19]
    Hermanson, G. T. Bioconjugate Techniques; Academic Press: San Diego, 2008.Google Scholar
  20. [20]
    Lakowicz, J. R. Principles of Fluorescence Spectroscopy; Springer: New York, 2006.CrossRefGoogle Scholar
  21. [21]
    Pons, T.; Medintz, I. L.; Wang, X.; English, D. S.; Mattoussi, H. Solution-phase single quantum dot fluorescence resonance energy transfer. J. Am. Chem. Soc. 2006, 128, 15324–15331.CrossRefPubMedGoogle Scholar
  22. [22]
    Clapp, A. R.; Medintz, I. L.; Mauro, J. M.; Fisher, B. R.; Bawendi, M. G.; Mattoussi, H. Fluorescence resonance energy transfer between quantum dot donors and dyelabeled protein acceptors. J. Am. Chem. Soc. 2004, 126, 301–310.CrossRefPubMedGoogle Scholar
  23. [23]
    Pons, T.; Uyeda, H. T.; Medintz, I. L.; Mattoussi, H. Hydrodynamic dimensions, electrophoretic mobility, and stability of hydrophilic quantum dots. J. Phys. Chem. B. 2006, 110, 20308–20316.CrossRefPubMedGoogle Scholar
  24. [24]
    Dabbousi, B. O.; Rodriguez-Viejo, J.; Mikulec, F. V.; Heine, J. R.; Mattoussi, H.; Ober, R.; Jensen, K. F.; Bawendi, M. G. (CdSe)ZnS core-shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B. 1997, 101, 9463–9475.CrossRefGoogle Scholar
  25. [25]
    Uyeda, H. T.; Medintz, I. L.; Jaiswal, J. K.; Simon, S. M.; Mattoussi, H. Synthesis of compact multidentate ligands to prepare stable hydrophilic quantum dot fluorophores. J. Am. Chem. Soc. 2005, 127, 3870–3878.CrossRefPubMedGoogle Scholar
  26. [26]
    Susumu, K.; Uyeda, H. T.; Medintz, I. L.; Pons, T.; Delehanty, J. B.; Mattoussi, H. Enhancing the stability and biological functionalities of quantum dots via compact multifunctional ligands. J. Am. Chem. Soc. 2007, 129, 13987–13996.CrossRefPubMedGoogle Scholar
  27. [27]
    Venkatesan, N.; Kim, B. H. Peptide conjugates of oligonucleotides: Synthesis and applications. Chem. Rev. 2006, 106, 3712–3761.CrossRefPubMedGoogle Scholar
  28. [28]
    Nitin, N.; Santangelo, P. J.; Kim, G.; Nie, S. M.; Bao, G. Dual FRET molecular beacons for mRNA detection in living cells. Nucl. Acids Res. 2004, 32, e57.CrossRefGoogle Scholar
  29. [29]
    Haugland, R. P. The Handbook: A Guide to Fluorescent Probes and Labeling Technologies; Invitrogen: San Diego, 2005.Google Scholar
  30. [30]
    Sarikaya, M.; Tamerler, C.; Schwartz, D. T.; Baneyx, F. O. Materials assembly and formation using engineered polypeptides. Ann. Rev. Mat. Res. 2004, 34, 373–408.CrossRefGoogle Scholar
  31. [31]
    Dennis, A. M.; Bao, G. Quantum dot-fluorescent protein pairs as novel fluorescence resonance energy transfer probes. Nano Lett. 2008, 8, 1439–1445.CrossRefPubMedADSGoogle Scholar
  32. [32]
    Yao, H.; Zhang, Y.; Xiao, F.; Xia, Z.; Rao, J. Quantum dot/ bioluminescence resonance energy transfer based highly sensitive detection of proteases. Angew. Chem. Int. Ed. 2007, 46, 4346–4349CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer Berlin Heidelberg 2009

Authors and Affiliations

  • Lorenzo Berti
    • 1
    • 2
  • Paola Serena D’Agostino
    • 1
  • Kelly Boeneman
    • 3
  • Igor L. Medintz
    • 3
    Email author
  1. 1.CNR-INFMNational Research Center on nanoStructures and bioSystems at Surfaces (S3)ModenaItaly
  2. 2.University of California Davis Medical CenterSacramentoUSA
  3. 3.Center for Bio/Molecular Science and Engineering Code 6900U.S. Naval Research LaboratoryWashingtonUSA

Personalised recommendations