Nano Research

, Volume 2, Issue 1, pp 30–46 | Cite as

Nanocrystals: Solution-based synthesis and applications as nanocatalysts

Open Access
Review Article

Abstract

Nanocrystals are emerging as key materials due to their novel shape- and size-dependent chemical and physical properties that differ drastically from their bulk counterparts. The main challenges in this field remain rationally controlled synthesis and large scale production. This article reviews recent progress in our laboratory related to solution-based synthesis of various nanostructures, including zero-dimensional (0-D) nanocrystals, 1-D nanowires and nanorods, hollow structures, and superlattice materials. On the other hand, the essential goal for nanoresearchers is to achieve industrial applications of nanostructured materials. In the past decades, these fascinating materials have been widely used in many promising fields such as nanofabrication, nanodevices, nanobiology, and nanocatalysis. Herein, we focus on their applications as nanocatalysts and try to illustrate the main problems and future directions in this area based on our recent endeavors in catalytic applications of nanocrystals.

Keywords

Nanocrystals solution-based synthesis nucleation and growth mechanism nanocatalysts 

Reference

  1. [1]
    Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271, 933–937.CrossRefADSGoogle Scholar
  2. [2]
    Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Sci. 2000, 30, 545–610.CrossRefGoogle Scholar
  3. [3]
    Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H. One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 2003, 15, 353–389.CrossRefGoogle Scholar
  4. [4]
    El-Sayed, M. A. Small is different: Shape-, size-, and composition-dependent properties of some colloidal semiconductor nanocrystals. Acc. Chem. Res. 2004, 37, 326–333.CrossRefPubMedGoogle Scholar
  5. [5]
    Huang, Y.; Duan, X. F.; Lieber, C. M. Nanowires for integrated multicolor nanophotonics. Small 2005, 1, 142–147.CrossRefPubMedGoogle Scholar
  6. [6]
    Lai, E.; Kim, W.; Yang, P. D. Vertical nanowire array-based light emitting diodes. Nano Res. 2008, 1, 123–128.CrossRefGoogle Scholar
  7. [7]
    Roduner, E. Size matters: Why nanomaterials are different. Chem. Soc. Rev. 2006, 35, 583–592.CrossRefPubMedGoogle Scholar
  8. [8]
    Hu, J. T.; Odom, T. W.; Lieber, C. M. Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes. Acc. Chem. Res. 1999, 32, 435–445.CrossRefGoogle Scholar
  9. [9]
    Cui, Y.; Wei, Q. Q.; Park, H. K.; Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001, 293, 1289–1292.CrossRefPubMedADSGoogle Scholar
  10. [10]
    Liu, Z. Robinson, J. T.; Sun, X. M.; Dai, H. J. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J. Am. Chem. Soc. 2008, 130, 10876–10877.CrossRefPubMedGoogle Scholar
  11. [11]
    Wang, Z. L. Energy harvesting for self-powered nanosystems. Nano Res. 2008, 1, 1–8.CrossRefGoogle Scholar
  12. [12]
    Huang, W.; Kuhn, J. N.; Tsung, C. K.; Zhang, Y.; Habas, S. E.; Yang, P.; Somorjai, G. A. Dendrimer templated synthesis of one nanometer Rh and Pt particles supported on mesoporous silica: Catalytic activity for ethylene and pyrrole hydrogenation. Nano Lett. 2008, 8, 2027–2034.CrossRefPubMedADSGoogle Scholar
  13. [13]
    Sun, X. M.; Liu, Z.; Welsher, K.; Robinson, J. T.; Goodwin, A.; Zaric, S.; Dai, H. J. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 2008, 1, 203–212.CrossRefGoogle Scholar
  14. [14]
    Gao, X.; Cui, Y.; Levenson, R. M.; Chung, L. W. K.; Nie, S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 2004, 22, 969–976.CrossRefPubMedGoogle Scholar
  15. [15]
    Tian, B.; Zheng, X.; Kempa, T. J.; Fang, Y.; Yu, N.; Yu, G.; Huang, J.; Lieber, C. M. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 2007, 449, 885–889.CrossRefPubMedADSGoogle Scholar
  16. [16]
    Tian, N.; Zhou, Z. Y.; Sun, S. G.; Ding, Y.; Wang, Z. L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science, 2007, 316, 732–735.CrossRefPubMedADSGoogle Scholar
  17. [17]
    Liu, F. K.; Huang, P. W.; Chang, Y. C.; Ko, F. H.; Chu, T. C. Combining optical lithography with rapid microwave heating for the selective growth of Au/Ag bimetallic core/shell structures on patterned silicon wafers. Langmuir 2005, 21, 2519–2525.CrossRefPubMedGoogle Scholar
  18. [18]
    Bhuvana, T.; Kulkarni, G. U. Highly conducting patterned Pd nanowires by direct-write electron beam lithography. ACS Nano 2008, 2, 457–462.CrossRefPubMedGoogle Scholar
  19. [19]
    Ge, J. P.; Li, Y. D. Selective atmospheric pressure chemical vapor deposition route to CdS arrays, nanowires, and nanocombs. Adv. Funct. Mater. 2004, 14, 157–162.CrossRefGoogle Scholar
  20. [20]
    Ge, J. P.; Wang, J.; Zhang, H. X.; Li, Y. D. A general atmospheric pressure chemical vapor deposition synthesis and crystallographic study of transition metal sulfide one-dimensional nanostructures. Chem. Eur. J. 2004, 10, 3525–3530.CrossRefGoogle Scholar
  21. [21]
    Li, X. L.; Ge, J. P.; Li, Y. D. Atmospheric pressure chemical vapor deposition: An alternative route to large-scale MoS2 and WS2 inorganic fullerene-like nanostructures and nanoflowers. Chem. Eur. J. 2004, 10, 6163–6171.CrossRefGoogle Scholar
  22. [22]
    Ge, J. P.; Wang, J.; Zhang, H. X.; Wang, X.; Peng, Q.; Li, Y. D. Halide-transport chemical vapor deposition of luminescent ZnS: Mn2+ one-dimensional nanostructures. Adv. Funct. Mater. 2005, 15, 303–308.CrossRefGoogle Scholar
  23. [23]
    Jin, R. C.; Cao, Y. W.; Mirkin, C. A.; Kelly, K. L.; Schatz, G. C.; Zheng, J. G. Photoinduced conversion of silver nanospheres to nanoprisms. Science 2001, 294, 1901–1903.CrossRefPubMedADSGoogle Scholar
  24. [24]
    Yin, Y. D.; Alivisatos, A. P. Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature 2005, 437, 664–670.CrossRefPubMedADSGoogle Scholar
  25. [25]
    Murphy, C. J.; Sau, T. K.; Gole, A. M.; Orendorff, C. J. G.; Gou, J. L.; Hunyadi, S. E.; Li, T. Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. J. Phys. Chem. B 2005, 109, 13857–13870.CrossRefPubMedGoogle Scholar
  26. [26]
    Murray, C. B.; Norris, D. J.; Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 115, 8706–8715.CrossRefGoogle Scholar
  27. [27]
    Donegá, C. M.; Liljeroth, P.; Vanmaekelbergh, D. Physicochemical evaluation of the hot-injection method, a synthesis route for monodisperse nanocrystals. Small 2005, 1, 1152–1162.CrossRefGoogle Scholar
  28. [28]
    Jun, Y.; Choi, J.; Cheon, J. Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes. Angew. Chem. Int. Ed. 2006, 45, 3414–3439.CrossRefGoogle Scholar
  29. [29]
    Rao, C. N. R.; Vivekchand, S. R. C.; Biswas, K.; Govindaraj, A. Synthesis of inorganic nanomaterials. Dalton Trans. 2007, 3728–3749.Google Scholar
  30. [30]
    Pinna, N.; Niederberger, M. Surfactant-free nonaqueous synthesis of metal oxide nanostructures. Angew. Chem. Int. Ed. 2008, 47, 5292–5304.CrossRefGoogle Scholar
  31. [31]
    Yoshimura, M.; Byrappa, K. Hydrothermal processing of materials: Past, present and future. J. Mater. Sci. 2008, 43, 2085–2103.CrossRefADSGoogle Scholar
  32. [32]
    Sun, S.; Zeng, H.; Robinson, D. B.; Raoux, S.; Rice, P. M.; Wang, S. X.; Li, G. Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J. Am. Chem. Soc. 2004, 126, 273–279.CrossRefPubMedGoogle Scholar
  33. [33]
    Wang, D. S.; Liang, X.; Li, Y. D. Preparation of nearly monodisperse nanoscale inorganic pigments. Chem. Asian J. 2006, 1, 91–94.CrossRefPubMedGoogle Scholar
  34. [34]
    Park, J.; Joo, J.; Kwon, S. G.; Jang, Y.; Hyeon, T. Synthesis of monodisperse spherical nanocrystals. Angew. Chem. Int. Ed. 2007, 46, 4630–4660.CrossRefGoogle Scholar
  35. [35]
    Lee, E. P.; Xia, Y. N. Growth and patterning of Pt nanowires on silicon substrates. Nano Res. 2008, 1, 129–137.CrossRefADSGoogle Scholar
  36. [36]
    Hsu, Y. F.; Xi, Y. Y.; Tam, K. H.; Djurisic, A. B.; Luo, J. M.; Ling, C. C.; Cheung, C. K.; Ng, A. M. C.; Chan, W. K.; Deng, X.; Beling, C. D.; Fung, S.; Cheah, K. W.; Fong, P. W. K.; Surya, C. C. Undoped p-type ZnO nanorods synthesized by a hydrothermal method. Adv. Funct. Mater. 2008, 18, 1020–1030.CrossRefGoogle Scholar
  37. [37]
    Hu, M. J.; Lin, B.; Yu, S. H. Magnetic field-induced solvothermal synthesis of one-dimensional assemblies of Ni-Co alloy microstructures. Nano Res. 2008, 1, 303–313.CrossRefGoogle Scholar
  38. [38]
    Burda, C.; Chen, X.; Narayanan, R.; El-Sayed, M. A. Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 2005, 105, 1025–1102.CrossRefPubMedGoogle Scholar
  39. [39]
    Bruchez, M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Semiconductor nanocrystals as fluorescent biological labels. Science 1998, 281, 2013–2016.CrossRefPubMedADSGoogle Scholar
  40. [40]
    Kuo, C. H.; Chen, C. H.; Huang, M. H. Seed-mediated synthesis of monodispersed Cu2O nanocubes with five different size ranges from 40 to 420 nm. Adv. Funct. Mater. 2007, 17, 3773–3780.CrossRefGoogle Scholar
  41. [41]
    Tao, A. R.; Habas, S.; Yang, P. Shape control of colloidal metal nanocrystals. Small 2008, 4, 310–325.CrossRefGoogle Scholar
  42. [42]
    Viswanatha, R.; Battaglia, D. M.; Curtis, M. E.; Mishima, T. D.; Johnson, M. B.; Peng, X. G. Shape control of doped semiconductor nanocrystals (d-dots). Nano Res. 2008, 1, 138–144.CrossRefGoogle Scholar
  43. [43]
    Xie, T.; Li, S.; Wang, W. B.; Peng, Q.; Li, Y. D. Nucleation and growth of BaFxCl2−x nanorods. Chem. Eur. J. 2008, 14, 9730–9735.CrossRefGoogle Scholar
  44. [44]
    Zhang, H. W.; Delikanli, S.; Qin, Y. L.; He, S. L.; Swihart, M.; Zeng, H. Synthesis of monodisperse CdS nanorods catalyzed by Au nanoparticles. Nano Res. 2008, 1, 314–320.CrossRefGoogle Scholar
  45. [45]
    Xie, T.; Li, S.; Peng, Q.; Li, Y. D. Monodisperse BaF2 nanocrystals: phase, size transition and self-assembly. Angew. Chem. Int. Ed. 2009, 48, 196–200.CrossRefGoogle Scholar
  46. [46]
    Peng, X. G.; Manna, L.; Yang, W. D.; Wickham, J.; Scher, E.; Kadavanich, A.; Alivisatos, A. P. Shape control of CdSe nanocrystals. Nature 2000, 404, 59–61.CrossRefPubMedADSGoogle Scholar
  47. [47]
    Yin, M.; O’Brien, S. Synthesis of monodisperse nanocrystals of manganese oxides. J. Am. Chem. Soc. 2003, 125, 10180–10181.CrossRefPubMedGoogle Scholar
  48. [48]
    Park, J.; Lee, E.; Hwang, N. M.; Kang, M.; Kim, S. C.; Hwang, Y.; Park, J. G.; Noh, H. J.; Kim, J. Y.; Park, J. H.; Hyeon, T. One-nanometer-scale size-controlled synthesis of monodisperse magnetic iron oxide nanoparticles. Angew. Chem. Int. Ed. 2005, 44, 2872–2877.CrossRefGoogle Scholar
  49. [49]
    Park, J.; An, K.; Hwang, Y.; Park, J. G.; Noh, H. J.; Kim, J. Y.; Park, J. H.; Hwang, N. M.; Hyeon, T. Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 2004, 3, 891–895.CrossRefPubMedADSGoogle Scholar
  50. [50]
    Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. D. A general strategy for nanocrystal synthesis. Nature 2005, 437, 121–124.CrossRefPubMedADSGoogle Scholar
  51. [51]
    LaMer, V. K.; Dinegar, R. H. Theory, production and mechanism of formation of monodispersed hydrosols. J. Am. Chem. Soc. 1950, 72, 4847–4854.CrossRefGoogle Scholar
  52. [52]
    Huo, Z. Y.; Chen, C.; Liu, X. W.; Chu, D. R.; Li, H. H.; Peng, Q.; Li, Y. D. One-pot synthesis of monodisperse CeO2 nanocrystals and superlattices. Chem. Commun. 2008, 3741–3743.Google Scholar
  53. [53]
    Wang, D. S.; Xie, T.; Peng, Q.; Li, Y. D. Ag, Ag2S, and Ag2Se nanocrystals: Synthesis, assembly, and construction of mesoporous structures. J. Am. Chem. Soc. 2008, 130, 4016–4022.CrossRefPubMedGoogle Scholar
  54. [54]
    Wang, D. S.; Xie, T.; Peng, Q.; Li, Y. D. Direct thermal decomposition of metal nitrates in octadecylamine to metal oxide nanocrystals. Chem. Eur. J. 2008, 14, 2507–2513.CrossRefGoogle Scholar
  55. [55]
    Wang, D. S.; Zheng, W.; Hao, C. H.; Peng, Q.; Li, Y. D. General synthesis of I-III-VI2 ternary semiconductor nanocrystals. Chem. Commun. 2008, 2556–2558.Google Scholar
  56. [56]
    Wang, D. S.; Hao, C. H.; Zheng, W.; Peng, Q.; Wang, T. H.; Liao, Z. M.; Yu, D. P.; Li, Y. D. Ultralong singlecrystalline Ag2S nanowires: Promising candidates for photoswitches and room-temperature oxygen sensors. Adv. Mater. 2008, 20, 2628–2632.CrossRefGoogle Scholar
  57. [57]
    Tan, Y. W.; Xue, X. Y.; Peng, Q.; Zhao, H.; Wang, T. H.; Li, Y. D. Controllable fabrication and electrical performance of single crystalline Cu2O nanowires with high aspect ratios. Nano Lett. 2007, 7, 3723–3728.CrossRefADSGoogle Scholar
  58. [58]
    Chen, W.; Peng, Q.; Li, Y. D. Alq3 nanorods: Promising building blocks for optical devices. Adv. Mater. 2008, 20, 2747–2750.CrossRefGoogle Scholar
  59. [59]
    Chen, W.; Peng, Q.; Li, Y. D. Luminescent bis-(8-hydroxyquinoline) cadmium complex nanorods. Cryst. Growth Des. 2008, 8, 564–567.CrossRefGoogle Scholar
  60. [60]
    Liang, X.; Wang, X.; Zhuang, Y.; Xu, B.; Kuang, S. M.; Li, Y. D. Formation of CeO2-ZrO2 solid solution nanocages with controllable structures via Kirkendall effect. J. Am. Chem. Soc. 2008, 130, 2736–2737.CrossRefPubMedGoogle Scholar
  61. [61]
    Liang, X.; Xu, B.; Kuang, S. M.; Wang, X. Multifunctionalized inorganic-organic rare earth hybrid microcapsules. Adv. Mater. 2008, 20, 3739–3744.CrossRefGoogle Scholar
  62. [62]
    Zhuang, Z. B.; Peng, Q.; Wang, X.; Li, Y. D. Tetrahedral colloidal crystals of Ag2S nanocrystals. Angew. Chem. Int. Ed. 2007, 46, 8174–8177.CrossRefGoogle Scholar
  63. [63]
    Zhuang, Z. B.; Peng, Q.; Zhang, B.; Li, Y. D. Controllable synthesis of Cu2S nanocrystals and their assembly into a superlattice. J. Am. Chem. Soc. 2008, 130, 10482–10483.CrossRefPubMedGoogle Scholar
  64. [64]
    Haruta, M.; Yamada, N.; Kobayashi, T.; Lijima, S. Gold catalysts prepared by co-precipitation for lowtemperature oxidation of hydrogen and of carbon monoxide. J. Catal. 1989, 115, 301–309.CrossRefGoogle Scholar
  65. [65]
    Valden, M.; Lai, X.; Goodman, D. W. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 1998, 281, 1647–1650.CrossRefPubMedADSGoogle Scholar
  66. [66]
    Thomas, J. M.; Johnson, B. F. G.; Raja, R.; Sankar, G.; Midgley, P. A. High-performance nanocatalysts for singlestep hydrogenations. Acc. Chem. Res. 2003, 36, 20–30.CrossRefPubMedGoogle Scholar
  67. [67]
    Chang, J. S.; Hwang, J. S.; Park, S. E. Preparation and application of nanocatalysts via surface functionalization of mesoporous materials. Res. Chem. Intermediat. 2003, 29, 921–938.CrossRefGoogle Scholar
  68. [68]
    Narayanan, R.; El-Sayed, M. A. Catalysis with transition metal nanoparticles in colloidal solution: Nanoparticle shape dependence and stability. J. Phys. Chem. B 2005, 109, 12663–12676.CrossRefPubMedGoogle Scholar
  69. [69]
    Chang, J. S.; Jhung, S. H.; Hwang, Y. K.; Park, S. E.; Hwang, J. S. Syntheses and applications of nanocatalysts based on nanoporous materials. Int. J. Nanotechnol. 2006, 3, 150–180.Google Scholar
  70. [70]
    Choudary, B. M.; Mulukutla, R. S.; Klabunde, K. J. Benzylation of aromatic compounds with different crystallites of MgO. J. Am. Chem. Soc. 2003, 125, 2020–2021.CrossRefPubMedGoogle Scholar
  71. [71]
    Zhou, K. B.; Wang, X.; Sun, X. M.; Peng, Q.; Li, Y. D. Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes. J. Catal. 2005, 229, 206–212.CrossRefGoogle Scholar
  72. [72]
    Liu, J. F.; Chen, W.; Liu, X. W.; Zhou, K. B.; Li, Y. D. Au/LaVO4 nanocomposite: Preparation, characterization, and catalytic activity for CO oxidation. Nano Res. 2008, 1, 46–55.CrossRefGoogle Scholar
  73. [73]
    Peng, S.; Lee, Y.; Wang, C.; Yin, H.; Dai, S.; Sun, S. H. A facile synthesis of monodisperse Au nanoparticles and their catalysis of CO oxidation. Nano Res. 2008, 1, 229–234.CrossRefGoogle Scholar
  74. [74]
    Zhou, K. B.; Xu, R.; Sun, X. M.; Chen, H. D.; Tian, Q.; Shen, D. X.; Li, Y. D. Favorable synergetic effects between CuO and the reactive planes of ceria nanorods. Catal. Lett. 2005, 101, 169–173.CrossRefGoogle Scholar
  75. [75]
    Wang, D. S.; Xu, R.; Wang, X.; Li, Y. D. NiO nanorings and their unexpected catalytic property for CO oxidation. Nanotechnology 2006, 17, 979–983.CrossRefADSGoogle Scholar
  76. [76]
    Xu, R.; Wang, X.; Wang, D. S.; Zhou, K. B.; Li, Y. D. Surface structure effects in nanocrystal MnO2 and Ag/MnO2 catalytic oxidation of CO. J. Catal. 2006, 237, 426–430.CrossRefGoogle Scholar
  77. [77]
    Wang, D. S.; Wang, X.; Xu, R.; Li, Y. D. Shape-dependent catalytic activity of CuO/MgO nanocatalysts. J. Nanosci. Nanotechnol. 2007, 7, 3602–3606.CrossRefPubMedGoogle Scholar
  78. [78]
    Zhou, K. B.; Wang, R. P.; Xu, B. Q.; Li, Y. D. Synthesis, characterization and catalytic properties of CuO nanocrystals with various shapes. Nanotechnology 2006, 17, 3939–3943.CrossRefADSGoogle Scholar
  79. [79]
    Xu, R.; Wang, D. S.; Zhang, J. T.; Li, Y. D. Shapedependent catalytic activity of silver nanoparticles for the oxidation of styrene. Chem. Asian J. 2006, 1, 888–893.CrossRefPubMedGoogle Scholar
  80. [80]
    Bratlie, K. M.; Lee, H.; Komvopoulos, K.; Yang, P.; Somorjai, G. A. Platinum nanoparticle shape effects on benzene hydrogenation selectivity. Nano Lett. 2007, 7, 3097–3101.CrossRefPubMedADSGoogle Scholar
  81. [81]
    Bond, G. C.; Thompson, D. T. Catalysis by gold. Catal. Rev. 1999, 41, 319–388.CrossRefGoogle Scholar
  82. [82]
    Toebes, M. L.; van Dillen, J. A.; De Jong, Y. P. Synthesis of supported palladium catalysts. J. Mol. Catal. A-Chem. 2001, 173, 75–98.CrossRefGoogle Scholar
  83. [83]
    Delannoy, L.; Weiher, N.; Tsapatsaris, N.; Beesley, A. M.; Nchari, L.; Schroeder, S. L. M.; Louis, C. Reducibility of supported gold (III) precursors: Influence of the metal oxide support and consequences for CO oxidation activity. Top. Catal. 2007, 44, 263–273.CrossRefGoogle Scholar
  84. [84]
    Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Ordered mesoporous molecular-sieves synthesized by a liquid-crystal template mechanism. Nature 1992, 359, 710–712.CrossRefADSGoogle Scholar
  85. [85]
    Tanev, P. T.; Chibwe, M. Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds. Nature 1994, 368, 321–323.CrossRefPubMedADSGoogle Scholar
  86. [86]
    Hu, Y. S.; Guo, Y. G.; Sigle, W.; Hore, S.; Balaya, P.; Maier, J. Electrochemical lithiation synthesis of nanoporous materials with superior catalytic and capacitive activity. Nat. Mater. 2006, 5, 713–717.CrossRefPubMedADSGoogle Scholar
  87. [87]
    Cejka, J.; Mintova, S. Perspectives of micro/mesoporous composites in catalysis. Catal. Rev. 2007, 49, 457–509.Google Scholar
  88. [88]
    Zhang, S. B.; Wang, J. K.; Liu, H. T.; Wang, X. L. One-pot synthesis of Ni-nanoparticle-embedded mesoporous titania/silica catalyst and its application for CO2-reforming of methane. Catal. Commun. 2008, 9, 995–1000.CrossRefGoogle Scholar
  89. [89]
    Xiong, H. F.; Zhang, Y. H.; Wang, S. G.; Liew, K. Y.; Li, J. L. Preparation and catalytic activity for Fischer Tropsch synthesis of Ru nanoparticles confined in the channels of mesoporous SBA-15. J. Phys. Chem. C 2008, 112, 9706–9709.Google Scholar
  90. [90]
    Phillips, J. M. Up close: Nanoscale science research centers. MRS Bull. 2006, 31, 44–49.Google Scholar
  91. [91]
    Bai, F.; Wang, D. S.; Huo, Z. Y.; Chen, W.; Liu, L. P.; Liang, X.; Chen, C.; Wang, X.; Peng, Q.; Li, Y. D. A versatile bottom-up assembly approach to colloidal spheres from nanocrystals. Angew. Chem. Int. Ed. 2007, 46, 6650–6653.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Department of ChemistryTsinghua UniversityBeijingChina

Personalised recommendations