Nano Research

, Volume 2, Issue 1, pp 78–84 | Cite as

Kinetics of molecular recognition mediated nanoparticle self-assembly

  • Chinmay Soman
  • Todd GiorgioEmail author
Open Access
Research Article


Nanoscale quantum dot-antibody conjugates have been shown to self-assemble to form micron-scale aggregates in the presence of specific proteomic antigen. The self-assembly process exhibits sigmoidal kinetics, suggesting that nucleation limits aggregation. Self-assembly kinetics in this study is characterized by flow cytometric analysis of the aggregation reaction over time. A range of physiologically relevant concentrations of the protein angiopoietin-2, a candidate cancer biomarker, are incubated with quantum dots conjugated with a polyclonal mixture of anti-angiopoietin-2 antibodies. Antigen concentration modulates the slopes and inflection times of the sigmoidal kinetics curves. An understanding of self-assembly kinetics in this system may lead to improvements in sensitivity and specificity of this novel proteomic biomarker detection technique and improve the screening, diagnostics, and therapy response monitoring for cancers and other diseases. This approach to studying the kinetics of nanoparticle self-assembly may also provide a valuable tool for understanding the fundamental characteristics of nanoscale particle aggregation.


Quantum dot self-assembly kinetics proteomics diagnostics 


  1. [1]
    Zlotnick, A.; Stray, S. J. How does your virus grow? Understanding and interfering with virus assembly. Trends Biotechnol. 2003, 21, 536–542.CrossRefPubMedGoogle Scholar
  2. [2]
    Flyvbjerg, H.; Jobs, E.; Leibler, S. Kinetics of self-assembling microtubules: An “inverse problem” in biochemistry. P. Natl. Acad. Sci. USA 1996, 93, 5975–5979.zbMATHCrossRefADSGoogle Scholar
  3. [3]
    Na, G. C.; Butz, L. J.; Carroll, R. J. Mechanism of in vitro collagen fibril assembly. Kinetic and morphological studies. J. Biol. Chem. 1986, 261, 12290–12299.PubMedGoogle Scholar
  4. [4]
    Whitesides, G. M.; Mathias, J. P.; Seto, C. T. Molecular self-assembly and nanochemistry: A chemical strategy for the synthesis of nanostructures. Science 1991, 254, 1312–1319.CrossRefPubMedADSGoogle Scholar
  5. [5]
    Yan, H.; Park, S. H.; Finkelstein, G.; Reif, J. H.; LaBean, T. H. DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science 2003, 301, 1882–1884.CrossRefPubMedADSGoogle Scholar
  6. [6]
    Storhoff, J. J.; Elghanian, R.; Mucic, R. C.; Mirkin, C. A.; Letsinger, R. L. One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J. Am. Chem. Soc. 1998, 120, 1959–1964.CrossRefGoogle Scholar
  7. [7]
    Hirsch, L. R.; Jackson, J. B.; Lee, A.; Halas, N. J.; West, J. L. A whole blood immunoassay using gold nanoshells. Anal. Chem. 2003, 75, 2377–2381.CrossRefPubMedGoogle Scholar
  8. [8]
    Soman, C. P.; Giorgio, T. D. Quantum dot self-assembly for protein detection with sub-picomolar sensitivity. Langmuir 2008, 24, 4399–4404.CrossRefPubMedGoogle Scholar
  9. [9]
    Goldman, E. R.; Balighian, E. D.; Mattoussi, H.; Kuno, M. K.; Mauro, J. M.; Tran, P. T.; Anderson, G. P. Avidin: A natural bridge for quantum dot-antibody conjugates. J. Am. Chem. Soc. 2002, 124, 6378–6382.CrossRefPubMedGoogle Scholar
  10. [10]
    Zlotnick, A.; Aldrich, R.; Johnson, J. M.; Ceres, P.; Young, M. J. Mechanism of capsid assembly for an icosahedral plant virus. Virology 2000, 277, 450–456.CrossRefPubMedGoogle Scholar
  11. [11]
    Flyvbjerg, H.; Jobs, E. Microtubule dynamics. II. Kinetics of self-assembly. Phys. Rev. E 1997, 56, 7083–7099.CrossRefADSGoogle Scholar
  12. [12]
    Bonfils, C.; Bec, N.; Lacroix, B.; Harricane, M. C., Larroque, C. Kinetic analysis of tubulin assembly in the presence of the microtubule-associated protein TOGp. J. Biol. Chem. 2007, 282, 5570–5581.CrossRefPubMedGoogle Scholar
  13. [13]
    Koo, B. W.; Miranker, A. D. Contribution of the intrinsic disulfide to the assembly mechanism of islet amyloid. Protein Sci. 2005, 14, 231–239.CrossRefPubMedGoogle Scholar
  14. [14]
    Sluzky, V.; Tamada, J. A.; Klibanov, A. M.; Langer, R. Kinetics of insulin aggregation in aqueous solutions upon agitation in the presence of hydrophobic surfaces. P. Natl. Acad. Sci. USA 1991, 88, 9377–9381.CrossRefADSGoogle Scholar
  15. [15]
    Speed, M. A.; King, J.; Wang, D. I. C. Polymerization mechanism of polypeptide chain aggregation. Biotechnol. Bioeng. 1997, 54, 333–343.CrossRefPubMedGoogle Scholar
  16. [16]
    Spirito, M. D.; Chiappini, R.; Bassi, F. A.; Stasio, E. D.; Giardina, B.; Arcovito, G. Aggregation kinetics and structure of cryoimmunoglobulins clusters. Physica A 2002, 304, 211–219.CrossRefADSGoogle Scholar
  17. [17]
    Endres, D.; Miyahara, M.; Moisant, P.; Zlotnick, A. A reaction landscape identifies the intermediates critical for self-assembly of virus capsids and other polyhedral structures. Protein Sci. 2005, 14, 1518–1525.CrossRefPubMedGoogle Scholar
  18. [18]
    Endres, D.; Zlotnick, A. Model-based analysis of assembly kinetics for virus capsids or other spherical polymers. Biophys. J. 2002, 83, 1217–1230.CrossRefPubMedADSGoogle Scholar
  19. [19]
    Hagan, M. F.; Chandler, D. Dynamic pathways for viral capsid assembly. Biophys. J. 2006, 91, 42–54.CrossRefPubMedADSGoogle Scholar
  20. [20]
    McPherson, A. Micelle formation and crystallization as paradigms for virus assembly. BioEssays 2005, 27, 447–458.CrossRefPubMedGoogle Scholar
  21. [21]
    Zlotnick, A. Theoretical aspects of virus capsid assembly. J. Mol. Recognit. 2005, 18, 479–490.CrossRefPubMedGoogle Scholar
  22. [22]
    Zlotnick, A.; Johnson, J. M.; Wingfield, P. W.; Stahl, S. J.; Endres, D. A theoretical model successfully identifies features of hepatitis B virus capsid assembly. Biochemistry 1999, 38, 14644–14652.CrossRefPubMedGoogle Scholar
  23. [23]
    Bray, D.; Lay, S. Rapid numerical integration algorithm for finding the equilibrium state of a system of coupled binding reactions. Bioinformatics 1994, 10, 471–476.CrossRefGoogle Scholar
  24. [24]
    Bray, D.; Lay, S. Computer-based analysis of the binding steps in protein complex formation. P. Natl. Acad. Sci. USA 1997, 94, 13493–13498.CrossRefADSGoogle Scholar
  25. [25]
    Lay, S.; Bray, D. A computer program for the analysis of protein complex formation. Bioinformatics 1997, 13, 439–444.CrossRefGoogle Scholar
  26. [26]
    Chong, C. R.; Sullivan, D. J. Inhibition of heme crystal growth by antimalarials and other compounds: Implications for drug discovery. Biochem. Pharmacol. 2003, 66, 2201–2212.CrossRefPubMedGoogle Scholar
  27. [27]
    Kodaka, M. Interpretation of concentration-dependence in aggregation kinetics. Biophys. Chem. 2004, 109, 325–332.CrossRefPubMedGoogle Scholar
  28. [28]
    Hancock, K.; Tsang, V. C. Development and optimization of the FAST-ELISA for detecting antibodies to Schistosoma mansoni. J. Immunol. Meth. 1986, 92, 167–176.CrossRefGoogle Scholar
  29. [29]
    Kodaka, M. Requirements for generating sigmoidal time Course aggregation in nucleation-dependent polymerization model. Biophys. Chem. 2004, 107, 243–253.CrossRefPubMedGoogle Scholar
  30. [30]
    Towey, T. F.; Khan-Lodhi, A.; Robinson, B. H. Kinetics and mechanism of formation of quantum-sized cadmium sulphide particles in water-aerosol-OT-oil microemulsions. J. Chem. Soc. Faraday Trans. 1990, 86, 3757–3762.CrossRefGoogle Scholar
  31. [31]
    Matsumoto, A.; Kodama, K.; Aota, H.; Capek, I. Kinetics of emulsion crosslinking polymerization and copolymerization of allyl methacrylate. Eur. Polym. J. 1999, 35, 1509–1517.CrossRefGoogle Scholar
  32. [32]
    Sabaté, R.; Gallardo, M. An autocatalytic reaction as a model for the kinetics of the aggregation of -amyloid. Biopolymers 2003, 71, 190–195.CrossRefPubMedGoogle Scholar
  33. [33]
    Jarrett, J. T.; Lansbury, P. T., Jr. Seeding “one-dimensional crystallization” of amyloid: A pathogenic mechanism in Alzheimer’s disease and scrapie? Cell 1993, 73, 1055–1058.CrossRefPubMedGoogle Scholar

Copyright information

© Tsinghua University Press and Springer Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Interdisciplinary Program in Materials ScienceVanderbilt UniversityNashvilleUSA
  2. 2.Department of Biomedical EngineeringVanderbilt UniversityNashvilleUSA

Personalised recommendations