Nano Research

, Volume 2, Issue 1, pp 61–68 | Cite as

One-pot synthesis of highly luminescent CdTe quantum dots by microwave irradiation reduction and their Hg2+-sensitive properties

Open Access
Research Article

Abstract

A facile one-pot microwave irradiation reduction route has been developed for the synthesis of highly luminescent CdTe quantum dots using Na2TeO3 as the Te source in an aqueous environment. The synthesis parameters of this simple and rapid approach, including the reaction temperature and time, the pH of the reaction solution and the molar ratio of the 3-mercaptopropionic acid (MPA) stabilizer to Cd2+, have considerable influence on the particle size and photoluminescence quantum yield of the CdTe quantum dots. The photoluminescence quantum yield of CdTe quantum dots prepared using relatively short reaction times (10–40 min) reached 40%–60% (emission peaks at 550–640 nm). Furthermore, the resulting products could be used as fluorescent probes to detect Hg2+ ions in aqueous media. The response was linearly proportional to the concentration of Hg2+ ion in the range 8.0×10−9 mol/L to 2.0×10−6 mol/L with a detection limit of 2.7×10−9 mol/L.

Keywords

CdTe quantum dots microwave irradiation fluorescent sensor mercury 

Supplementary material

12274_2009_9004_MOESM1_ESM.pdf (193 kb)
Supplementary material, approximately 1.96 KB.

References

  1. [1]
    Colvin, V. L.; Schlamp, M. C.; Alivisatos, A. P. Light-emitting diodes made from cadmium selenide QDs and a semiconducting polymer. Nature 1994, 370, 354–357.CrossRefADSGoogle Scholar
  2. [2]
    Achermann, M.; Petruska, M. A.; Kos, S.; Smith, D. L.; Koleske, D. D.; Klimov, V. I. Energy-transfer pumping of semiconductor QDs using an epitaxial quantum well. Nature 2004, 429, 642–646.CrossRefPubMedADSGoogle Scholar
  3. [3]
    Chan, W. C. W.; Nie, S. M. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998, 281, 2016–2018.CrossRefPubMedADSGoogle Scholar
  4. [4]
    Barnham, K.; Marques, J. L.; Hassard, J.; O’Brien, P. Quantum-dot concentrator and thermodynamic model for the global redshift. Appl. Phys. Lett. 2000, 76, 1197–1199.CrossRefADSGoogle Scholar
  5. [5]
    Tsutsui, T. Applied physics: A light-emitting sandwich filling. Nature 2002, 420, 752–755.CrossRefPubMedADSGoogle Scholar
  6. [6]
    Oh, E.; Hong, M. -Y.; Lee, D.; Nam, S.-H.; Yoon, H. C.; Kim, H. -S. Inhibition assay of biomolecules based on fluorescence resonance energy transfer (FRET) between quantum dots and gold nanoparticles. J. Am. Chem. Soc. 2005, 127, 3270–3271.CrossRefPubMedGoogle Scholar
  7. [7]
    Ji, X.; Zheng, J.; Xu, J.; Rastogi, V. K.; Cheng, T. -C.; DeFrank, J. J.; Leblanc, R. M. (CdSe)ZnS quantum dots and organophosphorus hydrolase bioconjugate as biosensors for detection of paraoxon. J. Phys. Chem. B 2005, 109, 3793–3799.CrossRefPubMedGoogle Scholar
  8. [8]
    Chen, Y. F.; Rosenzweig, Z. Luminescent CdS quantum dots as selective ion probes. Anal. Chem. 2002, 74, 5132–5138.CrossRefPubMedGoogle Scholar
  9. [9]
    Jin, W. J.; Fernández-Argüelles, M. T.; Costa-Fernández, J. M.; Pereiro, R.; Sanz-Medel, A. Photoactivated luminescent CdSe quantum dots as sensitive cyanide probes in aqueous solutions. Chem. Commun. 2005, 883–885.Google Scholar
  10. [10]
    Chan, W. C. W.; Maxwell, D. J.; Gao, X. H.; Bailey, R. E.; Han, M. Y.; Nie, S. M. Luminescent quantum dots for multiplexed biological detection and imaging. Curr. Opin. Biotechnol. 2002, 13, 40–46.CrossRefPubMedGoogle Scholar
  11. [11]
    Susha, A. S.; Javier, A. M.; Parak, W. J.; Rogach, A. L. Luminescent CdTe QDs as ion probes and pH sensors in aqueous solutions. Colloids Surf. A: Physicochem. Eng. Asp. 2006, 281, 40–43.CrossRefGoogle Scholar
  12. [12]
    Yuan, J. P.; Guo, W. W.; Wang, E. K. Utilizing a CdTe quantum dots-enzyme hybrid system for the determination of both phenolic compounds and hydrogen peroxide. Anal. Chem. 2008, 80, 1141–1145.CrossRefPubMedGoogle Scholar
  13. [13]
    Xia, Y. -S.; Zhu, C. -Q. Use of surface-modified CdTe quantum dots as fluorescent probes in sensing mercury(II). Talanta 2008, 75, 215–221.PubMedGoogle Scholar
  14. [14]
    Xia, Y. S.; Zhu, C. Q. Two distinct photoluminescence responses of CdTe quantum dots to Ag(I). J. Lumin. 2008, 128, 166–172.CrossRefGoogle Scholar
  15. [15]
    Murray, C. B.; Norris, D. J.; Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E=sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 115, 8706–8715.CrossRefGoogle Scholar
  16. [16]
    Peng, Z. A.; Peng, X. G. Formation of high-quality CdTe, CdSe, and CdS QDs using CdO as precursor. J. Am. Chem. Soc. 2001, 123, 183–184.CrossRefPubMedGoogle Scholar
  17. [17]
    Talapin, D. V.; Haubold, S.; Rogach, A. L.; Kornowski, A.; Haase, M.; Weller, H. A novel organometallic synthesis of highly luminescent CdTe QDs. J. Phys. Chem. B 2001, 105, 2260–2263.CrossRefGoogle Scholar
  18. [18]
    Yu, W. W.; Wang, Y. A.; Peng, X. G. Formation and stability of size-, shape-, and structure-controlled CdTe QDs: Ligand effects on monomers and QDs. Chem. Mater. 2003, 15, 4300–4308.CrossRefGoogle Scholar
  19. [19]
    Gaponik, N.; Talapin, D. V.; Rogach, A. L.; Hoppe, K.; Shevchenko, E. V.; Kornowski, A.; Eychmller, A.; Weller, H. Thiol-capping of CdTe QDs: An alternative to organometallic synthetic routes. J. Phys. Chem. B 2002, 106, 7177–7185.CrossRefGoogle Scholar
  20. [20]
    Zhang, H.; Wang, L. P.; Xiong, H. M.; Hu, L. H.; Yang, B.; Li, W. Hydrothermal synthesis for high quality CdTe QDs. Adv. Mater. 2003, 15, 1712–1715.CrossRefGoogle Scholar
  21. [21]
    Li, L.; Qian, H. F.; Ren, J. C. Rapid synthesis of highly luminescent CdTe QDs in the aqueous phase by microwave irradiation with controllable temperature. Chem. Commun. 2005, 528–530.Google Scholar
  22. [22]
    Qian, H. F.; Dong, C. Q.; Weng, J. F.; Ren, J. C. Facile one-pot synthesis of luminescent, water-soluble, and biocompatible glutathione-coated CdTe QDs. Small 2006, 2, 747–751.CrossRefPubMedGoogle Scholar
  23. [23]
    He, Y.; Sai, L. -M.; Lu, H. -T.; Hu, M.; Lai, W. -Y.; Fan, Q. -L.; Wang, L. -H.; Huang, W. Microwave-assisted synthesis of water-dispersed CdTe QDs with high luminescent efficiency and narrow size distribution. Chem. Mater. 2007, 19, 359–365.CrossRefADSGoogle Scholar
  24. [24]
    He, Y.; Lu, H. -T.; Sai, L. -M.; Lai, W. -Y.; Fan, Q. -L.; Wang, L. -H.; Huang, W. Synthesis of CdTe QDs through program process of microwave irradiation. J. Phys. Chem. B 2006, 110, 13352–13356.CrossRefPubMedGoogle Scholar
  25. [25]
    Gautam, U. K.; Rao, C. N. R. Controlled synthesis of crystalline tellurium nanorods, nanowires, nanobelts and related structures by a self-seeding solution process. J. Mater. Chem. 2004, 14, 2530–2535.CrossRefGoogle Scholar
  26. [26]
    Cao, X. D.; Li, C. M.; Bao, H. F.; Bao, Q. L.; Dong, H. Fabrication of strongly fluorescent quantum dot-polymer composite in aqueous solution. Chem. Mater. 2007, 19, 3773–3779.CrossRefGoogle Scholar
  27. [27]
    Bao, H. F.; Wang, E. K.; Dong, S. J. One-pot synthesis of CdTe QDs and shape control of luminescent CdTe-cystine nanocomposites. Small 2006, 2, 476–480.CrossRefPubMedGoogle Scholar
  28. [28]
    Crosby, G. A.; Demas, J. N. Measurement of photoluminescence quantum yields. J. Phys. Chem. 1971, 75, 991–1024.CrossRefGoogle Scholar
  29. [29]
    Yu, W. W.; Qu, L. H.; Guo, W. H.; Peng, X. G. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS QDs. Chem. Mater. 2003, 15, 2854–2860.CrossRefGoogle Scholar
  30. [30]
    Li, L.; Qian, H. F.; Fang, N. H.; Ren, J. C. Significant enhancement of the quantum yield of CdTe nanocrystals synthesized in aqueous phase by controlling the pH and concentrations of precursor solutions. J. Lumin. 2006, 116, 59–66.CrossRefGoogle Scholar
  31. [31]
    Cai, Z. X.; Yang, H.; Zhang, Y.; Yan, X. P. Preparation, characterization and evaluation of water-soluble L-cysteine-capped-CdS nanoparticles as fluorescence probe for detection of Hg(II) in aqueous solution. Anal. Chim. Acta 2006, 559, 234–239.CrossRefGoogle Scholar
  32. [32]
    Li, J.; Mei, F.; Li, W. -Y.; He, X. -W.; Zhang, Y. -K. Study on the fluorescence resonance energy transfer between CdTe QDs and butyl-rhodamine B in the presence of CTMAB and its application on the detection of Hg(II). Spectrochim. Acta A 2008, 70, 811–817.CrossRefGoogle Scholar
  33. [33]
    Chen, B.; Yu, Y.; Zhou, Z. T.; Zhong, P. Synthesis of novel QDs as fluorescent sensors for Hg2+ ions. Chem. Lett. 2004, 33, 1608–1609.CrossRefGoogle Scholar
  34. [34]
    Chen, J. L.; Gao, Y. C.; Xu, Z. B.; Wu, G. H.; Chen, Y. C.; Zhu, C. Q. A novel fluorescent array for mercury(II) ion in aqueous solution with functionalized cadmium selenide nanoclusters. Anal. Chim. Acta 2006, 577, 77–84.CrossRefPubMedGoogle Scholar

Copyright information

© Tsinghua University Press and Springer Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Department of ChemistryShandong UniversityJinanChina

Personalised recommendations