Nano Research

, Volume 2, Issue 1, pp 54–60 | Cite as

Formation of Na0.44MnO2 nanowires via stress-induced splitting of birnessite nanosheets

  • Yanguang Li
  • Yiying WuEmail author
Open Access
Research Article


High aspect ratio Na0.44MnO2 nanowires with a complex one-dimensional (1-D) tunnel structure have been synthesized. We found that the reaction went through layered birnessite nanosheet intermediates, and that their conversion to the final product involved splitting of the nanosheets into nanowires. Based on our observations, a stress-induced splitting mechanism for conversion of birnessite nanosheets to Na0.44MnO2 nanowires is proposed. The final and intermediate phases show topotaxy with 〈001〉f // 〈020〉b or 〈110〉b where f represents the final Na0.44MnO2 phase and b the intermediate birnessite phase. As a result of their high surface areas, the nanowires are efficient catalysts for the oxidation of pinacyanol chloride dye.


Birnessite manganese oxide nanowire nanosheet stress conversion 

Supplementary material

12274_2009_9003_MOESM1_ESM.pdf (1.6 mb)
Supplementary material, approximately 1.62 MB.


  1. [1]
    Feng, Q.; Kanoh, H.; Ooi, K. Manganese oxide porous crystals. J. Mater. Chem. 1999, 9, 319–333.CrossRefGoogle Scholar
  2. [2]
    Suib, S. L. Microporous manganese oxides. Curr. Opin. Solid State Mater. Sci. 1998, 3, 63–70.CrossRefGoogle Scholar
  3. [3]
    Suib, S. L. Porous manganese oxide octahedral molecular sieves and octahedral layered materials. Acc. Chem. Res. 2008, 41, 479–487.CrossRefPubMedGoogle Scholar
  4. [4]
    Doeff, M. M.; Anapolsky, A.; Edman, L.; Richardson, T. J.; De Jonghe, L. C. A high-rate manganese oxide for rechargeable lithium battery applications. J. Electrochem. Soc. 2001, 148, A230–A236.CrossRefGoogle Scholar
  5. [5]
    Hosono, E.; Matsuda, H.; Honma, I.; Fujihara, S.; Ichihara, M.; Zhou, H. Synthesis of single crystalline electro-conductive Na0.44MnO2 nanowires with high aspect ratio for the fast charge-discharge Li ion battery. J. Power Sources 2008, 182, 349–352.CrossRefGoogle Scholar
  6. [6]
    Shen, X.; Ding, Y.; Liu, J.; Laubernds, K.; Zerger, R. P.; Polverejan, M.; Son, Y. -C.; Aindow, M.; Suib, S. L. Synthesis, characterization, and catalytic applications of manganese oxide octahedral molecular sieve (OMS) nanowires with a 2 × 3 tunnel structure. Chem. Mater. 2004, 16, 5327–5335.CrossRefGoogle Scholar
  7. [7]
    Shen, Y. F.; Zerger, R. P.; DeGuzman, R. N.; Suib, S. L.; McCurdy, L.; Potter, D. I.; O’Young, C. L. Manganese oxide octahedral molecular sieves: Preparation, characterization, and applications. Science 1993, 260, 511–515.CrossRefPubMedADSGoogle Scholar
  8. [8]
    Thackeray, M. M. Manganese oxides for lithium batteries. Prog. Solid State Chem. 1997, 25, 1–71.CrossRefGoogle Scholar
  9. [9]
    Yuan, J.; Liu, X.; Akbulut, O.; Hu, J.; Suib, S. L.; Kong, J.; Stellacci, F. Superwetting nanowire membranes for selective absorption. Nat. Nanotechnol. 2008, 3, 332–336.CrossRefPubMedADSGoogle Scholar
  10. [10]
    Wang, X.; Li, Y. Selected-control hydrothermal synthesis of α- and β-MnO2 single crystal nanowires. J. Am. Chem. Soc. 2002, 124, 2880–2881.CrossRefPubMedGoogle Scholar
  11. [11]
    Wang, X.; Li, Y. Synthesis and formation mechanism of manganese dioxide nanowires/ nanorods. Chem. -Eur. J. 2003, 9, 300–306.CrossRefGoogle Scholar
  12. [12]
    Portehault, D.; Cassaignon, S.; Baudrin, E.; Jolivet, J.-P. Morphology control of cryptomelane type MnO2 nanowires by soft chemistry. Growth mechanisms in aqueous medium. Chem. Mater. 2007, 19, 5410–5417.CrossRefGoogle Scholar
  13. [13]
    Shen, X. -F.; Ding, Y. -S.; Liu, J.; Cai, J.; Laubernds, K.; Zerger, R. P.; Vasiliev, A.; Aindow, M.; Suib, S. L. Control of nanometer-scale tunnel sizes of porous manganese oxide octahedral molecular sieve nanomaterials. Adv. Mater. 2005, 17, 805–809.CrossRefGoogle Scholar
  14. [14]
    Liu, Z. -H.; Ooi, K. Preparation and alkali-metal ion extraction/insertion reactions with nanofibrous manganese oxide having 2 × 4 tunnel structure. Chem. Mater. 2003, 15, 3696–3703.CrossRefGoogle Scholar
  15. [15]
    Xia, G. -G.; Tong, W.; Tolentino, E. N.; Duan, N. -G.; Brock, S. L.; Wang, J. -Y.; Suib, S. L.; Ressler, T. Synthesis and characterization of nanofibrous sodium manganese oxide with a 2 × 4 tunnel structure. Chem. Mater. 2001, 13, 1585–1592.CrossRefGoogle Scholar
  16. [16]
    Liu, L.; Feng, Q.; Yanagisawa, K.; Wang, Y. Characterization of birnessite-type sodium manganese oxides prepared by hydrothermal reaction process. J. Mater. Sci. Lett. 2000, 19, 2047–2050.CrossRefGoogle Scholar
  17. [17]
    Lanson, B.; Drits, V. A.; Feng, Q.; Manceau, A. Structure of synthetic Na-birnessite: Evidence for a triclinic onelayer unit cell. Am. Mineral. 2002, 87, 1662–1671.Google Scholar
  18. [18]
    Lanson, B.; Drits, V. A.; Silvester, E.; Manceau, A. Structure of H-exchanged hexagonal birnessite and its mechanism of formation from Na-rich monoclinic buserite at low pH. Am. Mineral. 2000, 85, 826–838.Google Scholar
  19. [19]
    Silvester, E.; Manceau, A.; Drits, V. A. Structure of synthetic monoclinic Na-rich birnessite and hexagonal birnessite: II. Results from chemical studies and EXAFS spectroscopy. Am. Mineral. 1997, 82, 962–978.Google Scholar
  20. [20]
    Segal, S. R.; Suib, S. L.; Foland, L. Decomposition of pinacyanol chloride dye using several manganese oxide catalysts. Chem. Mater. 1997, 9, 2526–2532.CrossRefGoogle Scholar
  21. [21]
    Sabate, R.; Estelrich, J. Determination of the dimerization constant of pinacyanol: Role of the thermochromic effect. Spectrochim. Acta A 2008, 70, 471–476.CrossRefGoogle Scholar
  22. [22]
    Thompson, K. M.; Griffith, W. P.; Spiro, M. Mechanism of bleaching by peroxides. Part 3. Kinetics of the bleaching of phenolphthalein by transition-metal salts in high pH peroxide solutions. J. Chem. Soc., Faraday Trans. 1994, 90, 1105–1114.CrossRefGoogle Scholar
  23. [23]
    Thompson, K. M.; Spiro, M.; Griffith, W. P. Mechanism of bleaching by peroxides. Part 4. Kinetics of bleaching of malvin chloride by hydrogen peroxide at low pH and its catalysis by transition-metal salts. J. Chem. Soc., Faraday Trans. 1996, 92, 2535–2540.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Department of ChemistryThe Ohio State UniversityColumbusUSA

Personalised recommendations