Nano Research

, Volume 2, Issue 1, pp 1–29 | Cite as

Self-assembled materials for catalysis

  • Kake Zhu
  • Donghai Wang
  • Jun LiuEmail author
Open Access
Review Article


The purpose of this review is to highlight developments in self-assembled nanostructured materials (i.e., mesoporous and nanoparticle-based materials) and their catalytic applications. Since there are many available reviews of metal-based nanoparticles as catalysts, this review will mainly focus on self-assembled oxide-based catalytic materials. The content includes: (1) design and synthetic strategies for self-assembled mesoporous catalysts, (2) polyoxometalate (POM)-based nanocatalysts, (3) dendrimer-based nanocatalysts, and (4) shaped nanomaterials and catalytic applications. We show that controlled assembly of molecules, crystalline seeds, and nano building blocks into organized mesoscopic structures or controlled morphologies is an effective approach for tailoring porosities of heterogeneous catalysts and controlling their catalytic activities.


Self-assembly mesoporous microporous nanoparticles polyoxometalates dendrimers zeolites layered double hydroxides heterogeneous catalysis 


  1. [1]
    National Research Council Panel on New Directions in Catalytic Sciences and Technology, Catalysis Looks to the Future; National Academy Press: Washington D. C., 1992.Google Scholar
  2. [2]
    Huber, G. W.; Chheda, J. N.; Barrett, C. J.; Dumesic, J. A. Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates. Science 2005, 308, 1446–1450.PubMedADSGoogle Scholar
  3. [3]
    Armor, J. N. Catalysis and the hydrogen economy. Catal. Lett. 2005, 101, 131–135.Google Scholar
  4. [4]
    Olah, G. A. Beyond oil and gas: The methanol economy. Angew. Chem. Int. Edit. 2005, 44, 2636–2639.Google Scholar
  5. [5]
    Sheldon, R. A. The E factor: Fifteen years on. Green Chem. 2007, 9, 1273–1283.Google Scholar
  6. [6]
    Thomas, J. M.; Thomas, W. J. Principles and Practice of heterogeneous Catalysis; Wiley-VCH: Weinheim, 1996.Google Scholar
  7. [7]
    Jacobs, P. A.; Martens, J. A.; Weitkamp, J.; Beyer, H. K. Shape-selectivity changes in high-silica zeolites. Faraday Discuss. Chem. Soc. 1981, 72, 353–369.Google Scholar
  8. [8]
    Haag, W. O.; Lago, R. M.; Weisz, P. B. Transport and reactivity of hydrocarbon molecules in a shape-selective zeolite. Faraday Discuss. Chem. Soc. 1981, 72, 317–330.Google Scholar
  9. [9]
    Derouane, E. G.; Dejaifve, P.; Gabelica, Z.; Vedrine, J. C. Molecular shape selectivity of ZSM-5, modified ZSM-5 and ZSM-11 type zeolites. Faraday Discuss. Chem. Soc. 1981, 72, 331–344.Google Scholar
  10. [10]
    Thomas, J. M.; Millward, G. R.; Ramdas, S.; Bursill, L. A.; Audier, M. New methods for the structural characterization of shape-selective zeolites. Faraday Discuss. Chem. Soc. 1981, 72, 345–352.Google Scholar
  11. [11]
    Corma, A.; Rey, F.; Valencia, S.; Jorda, J. L.; Rius, J. A zeolite with interconnected 8-, 10- and 12-ring pores and its unique catalytic selectivity. Nat. Mater. 2003, 2, 493–497.PubMedADSGoogle Scholar
  12. [12]
    Bond, G. C.; Thompson, D. T. Catalysis by gold. Catal. Rev. Sci. Engin. 1999, 41, 319–388.Google Scholar
  13. [13]
    Bell, A. T. The impact of nanoscience on heterogeneous catalysis. Science 2003, 299, 1688–1691.PubMedADSGoogle Scholar
  14. [14]
    Herzing, A. A.; Kiely, C. J.; Carley, A. F.; Landon, P.; Hutchings, G. J. Identification of active gold nanoclusters on iron oxide supports for CO oxidation. Science 2008, 321, 1331–1335.PubMedADSGoogle Scholar
  15. [15]
    Nozaki, C.; Lugmair, C. G.; Bell, A. T.; Tilley, T. D. Synthesis, characterization, and catalytic performance of single-site iron(III) centers on the surface of SBA-15 silica. J. Am. Chem. Soc. 2002, 124, 13194–13203.PubMedGoogle Scholar
  16. [16]
    Fujdala, K. L.; Drake, I. J.; Bell, A. T.; Tilley, T. D. Atomic level control over surface species via a molecular precursor approach: Isolated Cu(I) sites and Cu nanoparticles supported on mesoporous silica. J. Am. Chem. Soc. 2004, 126, 10864–10866.PubMedGoogle Scholar
  17. [17]
    Maschmeyer, T.; Rey, F.; Sankar, G.; Thomas, J. M. Heterogeneous catalysis obtained by grafting metallocene complexes onto mesoporous silica. Nature 1995, 378, 159–162.ADSGoogle Scholar
  18. [18]
    Corma, A. From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem. Rev. 1997, 97, 2373–2419.PubMedGoogle Scholar
  19. [19]
    Breck, D. W. Zeolite Molecular Sieves; Robert E. Krieger Publishing Company Inc.: Malabar, FL, 1974.Google Scholar
  20. [20]
    Tao, Y. S.; Kanoh, H.; Abrams, L.; Kaneko, K. Mesoporemodified zeolites: Preparation, characterization, and applications. Chem. Rev. 2006, 106, 896–910.PubMedGoogle Scholar
  21. [21]
    van Donk, S.; Broersma, A.; Gijzeman, O. L. J.; van Bokhoven, J. A.; Bitter, J. H.; de Jong, K. P. Combined diffusion, adsorption, and reaction studies of n-hexane hydroisomerization over Pt/H-mordenite in an oscillating microbalance. J. Catal. 2001, 204, 272–280.Google Scholar
  22. [22]
    Herrmann, C.; Haas, J.; Fetting, F. Effect of the crystal size on the activity of ZSM-5 catalysts in various reactions. Appl. Catal. 1987, 35, 299–310.Google Scholar
  23. [23]
    Perez-Ramirez, J.; Kapteijn, F.; Groen, J. C.; Domenech, A.; Mul, G.; Moulijn, J. A. Steam-activated FeMFI zeolites. Evolution of iron species and activity in direct N2O decomposition. J. Catal. 2003, 214, 33–45.Google Scholar
  24. [24]
    Zhu, K.; Wang, D.; Liu, J. Self-assembled materials for catalysis. In Design of Heterogeneous Catalysis: New Approaches based on Synthesis, Characterization and Modeling, Ozkan, U. S. ed. Wiley-VCH: Weinheim, 2009.Google Scholar
  25. [25]
    Narayanan, R.; El-Sayed, M. A. Catalysis with transition metal nanoparticles in colloidal solution: Nanoparticle shape dependence and stability. J. Phys. Chem. B 2005, 109, 12663–12676.PubMedGoogle Scholar
  26. [26]
    Ott, L. S.; Finke, R. G. Transition-metal nanocluster stabilization for catalysis: A critical review of ranking methods and putative stabilizers. Coord. Chem. Rev. 2007, 251, 1075–1100.Google Scholar
  27. [27]
    Astruc, D.; Lu, F.; Aranzaes, J. R. Nanoparticles as recyclable catalysts: The frontier between homogeneous and heterogeneous catalysis. Angew. Chem. Int. Ed. 2005, 44, 7852–7872.Google Scholar
  28. [28]
    Chiola, V.; Ritsko, J. E.; Vanderpool, C. D. Process for producing low-bulk density silica. US Patent 3556725, 1971.Google Scholar
  29. [29]
    DiRenzo, F.; Cambon, H.; Dutartre, R. A 28-year-old synthesis of micelle-templated mesoporous silica. Micropor. Mater. 1997, 10, 283–286.Google Scholar
  30. [30]
    Yanagisawa, T.; Shimizu, T.; Kuroda, K.; Kato, C. The preparation of alkyltrimethylammonium-kanemite complexes and their conversion to microporous materials. Bull. Chem. Soc. Japan. 1990, 63, 988–992.Google Scholar
  31. [31]
    Inagaki, S.; Fukushima, Y.; Kuroda, K. Synthesis of highly ordered mesoporous materials from layered polysilicate. J. Chem. Soc. Chem. Commun. 1993, 680–682.Google Scholar
  32. [32]
    Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Ordered mesoporous molecular-sieves synthesized by a liquid-crystal template mechanism. Nature 1992, 359, 710–712.ADSGoogle Scholar
  33. [33]
    Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T. W.; Olson, D. H.; Sheppard, E. W.; McCullen, S. B. et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 1992, 114, 10834–10843.Google Scholar
  34. [34]
    Huo, Q. S.; Margolese, D. I.; Ciesla, U.; Feng, P. Y.; Gier, T. E.; Sieger, P.; Leon, R.; Petroff, P. M.; Schuth, F.; Stucky, G. D. Generalized synthesis of periodic surfactant inorganic composite-materials. Nature 1994, 368, 317–321.ADSGoogle Scholar
  35. [35]
    Huo, Q. S.; Margolese, D. I.; Stucky, G. D. Surfactant control of phases in the synthesis of mesoporous silicabased materials. Chem. Mater. 1996, 8, 1147–1160.Google Scholar
  36. [36]
    Yang, P. D.; Zhao, D. Y.; Margolese, D. I.; Chmelka, B. F.; Stucky, G. D. Generalized syntheses of largepore mesoporous metal oxides with semicrystalline frameworks. Nature 1998, 396, 152–155.ADSGoogle Scholar
  37. [37]
    Bagshaw, S. A.; Prouzet, E.; Pinnavaia, T. J. Templating of mesoporous molecular-sieves by nonionic polyethylene oxide surfactants. Science 1995, 269, 1242–1244.PubMedADSGoogle Scholar
  38. [38]
    Tanev, P. T.; Pinnavaia, T. J. A neutral templating route to mesoporous molecular-sieves. Science 1995, 267, 865–867.PubMedADSGoogle Scholar
  39. [39]
    Zhao, D. Y.; Feng, J. L.; Huo, Q. S.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 1998, 279, 548–552.PubMedADSGoogle Scholar
  40. [40]
    Zhao, D. Y.; Huo, Q. S.; Feng, J. L.; Chmelka, B. F.; Stucky, G. D. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J. Am. Chem. Soc. 1998, 120, 6024–6036.Google Scholar
  41. [41]
    Chen, C. Y.; Burkett, S. L.; Li, H. X.; Davis, M. E. Studies on mesoporous materials II. Synthesis mechanism of MCM-41. Micropor. Mater. 1993, 2, 27–34.Google Scholar
  42. [42]
    Stucky, G. D.; Monnier, A; Schuth, F.; Huo, Q. S.; Margolese, D.; Kumar, D.; Krishnamurty, M.; Petroff, P.; Firouzi, A.; Janicke, M.; Chemlka, B. F. Molecular and atomic arrays in nanoporous and mesoporous materials synthesis. Mol. Cryst. Liq. Cryst. 1994, 240, 187–200.Google Scholar
  43. [43]
    Huo, Q. S.; Margolese, D. I.; Ciesla, U.; Demuth, D. G.; Feng, P. Y.; Gier, T. E.; Sieger, P.; Firouzi, A.; Chmelka, B. F.; Schuth, F.; Stucky, G. D. Organization of organicmolecules with inorganic molecular-species into nanocomposite biphase arrays. Chem. Mater. 1994, 6, 1176–1191.Google Scholar
  44. [44]
    Firouzi, A.; Kumar, D.; Bull, L. M.; Besier, T.; Sieger, P.; Huo, Q. S.; Walker, S. A.; Zasadzinski, J. A.; Glinka, C.; Nicol, J. et al. Cooperative organization of inorganicsurfactant and biomimetic assemblies. Science 1995, 267, 1138–1143.PubMedADSGoogle Scholar
  45. [45]
    Taguchi, A.; Schuth, F. Ordered mesoporous materials in catalysis. Micropor. Mesopor. Mater. 2005, 77, 1–45.Google Scholar
  46. [46]
    Tian, B. Z.; Liu, X. Y.; Tu, B.; Yu, C. Z.; Fan, J.; Wang, L. M.; Xie, S. H.; Stucky, G. D.; Zhao, D. Y. Self-adjusted synthesis of ordered stable mesoporous minerals by acidbase pairs. Nat. Mater. 2003, 2, 159–163.PubMedADSGoogle Scholar
  47. [47]
    On, D. T.; Desplantier-Giscard, D.; Danumah, C.; Kaliaguine, S. Perspectives in catalytic applications of mesostructured materials. Appl. Catal. A-Gen. 2003, 253, 545–602.Google Scholar
  48. [48]
    Yue, Y. H.; Gedeon, A.; Bonardet, J. L.; Melosh, N.; D’Espinose, J. B.; Fraissard, J. Direct synthesis of AlSBA mesoporous molecular sieves: Characterization and catalytic activities. Chem. Commun. 1999, 1967–1968.Google Scholar
  49. [49]
    Tuel, A. Modification of mesoporous silicas by incorporation of heteroelements in the framework. Micropor. Mesopor. Mater. 1999, 27, 151–169.Google Scholar
  50. [50]
    On, D. T.; Joshi, P. N.; Kaliaguine, S. Synthesis, stability and state of boron in boron-substituted MCM-41 mesoporous molecular sieves. J. Phys. Chem. 1996, 100, 6743–6748.Google Scholar
  51. [51]
    Fricke, R.; Kosslick, H.; Lischke, G.; Richter, M. Incorporation of gallium into zeolites: Syntheses, properties and catalytic application. Chem. Rev. 2000, 100, 2303–2405.PubMedGoogle Scholar
  52. [52]
    Kosslick, H.; Lischke, G.; Landmesser, H.; Parlitz, B.; Storek, W.; Fricke, R. Acidity and catalytic behavior of substituted MCM-48. J. Catal. 1998, 176, 102–114.Google Scholar
  53. [53]
    Kosslick, H.; Lischke, G.; Walther, G.; Storek, W.; Martin, A.; Fricke, R. Physico-chemical and catalytic properties of Al-, Ga- and Fe-substituted mesoporous materials related to MCM-41. Micropor. Mater. 1997, 9, 13–33.Google Scholar
  54. [54]
    Mokaya, R.; Jones, W. Post-synthesis grafting of Al onto MCM-41. Chem. Commun. 1997, 2185–2186.Google Scholar
  55. [55]
    O’Neil, A. S.; Mokaya, R.; Poliakoff, M. Supercritical fluid-mediated alumination of mesoporous silica and its beneficial effect on hydrothermal stability. J. Am Chem. Soc. 2002, 124, 10636–10637.PubMedGoogle Scholar
  56. [56]
    Corma, A.; Fornes, V.; Navarro, M. T.; Perez-Pariente, J. Acidity and stability of MCM-41 crystalline aluminosilicalites. J. Catal. 1994, 148, 569–574.Google Scholar
  57. [57]
    Gedeon, A.; Lassoued, A.; Bonardet, J. L.; Fraissard, J. Surface acidity diagnosis and catalytic activity of AlSBA materials obtained by direct synthesis. Micropor. Mesopor. Mater. 2001, 44–45, 801–806.Google Scholar
  58. [58]
    On, D. T.; Kaliaguine, S. Ultrastable and highly acidic, zeolite-coated mesoporous aluminosilicates. Angew. Chem. Int. Edit. 2002, 41, 1036–1040.Google Scholar
  59. [59]
    Huang, L. M.; Guo, W. P.; Deng, P.; Xue, Z. Y.; Li, Q. Z. Investigation of synthesizing MCM-41/ZSM-5 composites. J. Phys. Chem. B 2000, 104, 2817–2823.Google Scholar
  60. [60]
    Jacobsen, C. J. H.; Madsen, C.; Houzvicka, J.; Schmidt, I.; Carlsson, A. Mesoporous zeolite single crystals. J. Am. Chem. Soc. 2000, 122, 7116–7117.Google Scholar
  61. [61]
    Janssen, A. H.; Schmidt, I.; Jacobsen, C. J. H.; Koster, A. J.; de Jong, K. P. Exploratory study of mesopore templating with carbon during zeolite synthesis. Micropor. Mesopor. Mater. 2003, 65, 59–75.Google Scholar
  62. [62]
    Xiao, F. S.; Wang, L. F.; Yin, C. Y.; Lin, K. F.; Di, Y.; Li, J. X.; Xu, R. R.; Su, D. S.; Schlogl, R.; Yokoi, T.; Tatsumi, T. Catalytic properties of hierarchical mesoporous zeolites templated with a mixture of small organic ammonium salts and mesoscale cationic polymers. Angew. Chem.-Int. Edit. 2006, 45, 3090–3093.Google Scholar
  63. [63]
    Choi, M.; Cho, H. S.; Srivastava, R.; Venkatesan, C.; Choi, D. H.; Ryoo, R. Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity. Nat. Mater. 2006, 5, 718–723.PubMedADSGoogle Scholar
  64. [64]
    Christensen, C. H.; Johannsen, K.; Schmidt, I.; Christensen, C. H. Catalytic benzene alkylation over mesoporous zeolite single crystals: Improving activity and selectivity with a new family of porous materials. J. Am. Chem. Soc. 2003, 125, 13370–13371.PubMedGoogle Scholar
  65. [65]
    Tanev, P. T.; Chibwe, M.; Pinnavaia, T. J. Titanium-containing mesoporous molecular-sieves for catalytic-oxidation of aromatic-compounds. Nature 1994, 368, 321–323.PubMedADSGoogle Scholar
  66. [66]
    Zhang, W. H.; Froba, M.; Wang, J. L.; Tanev, P. T.; Wong, J.; Pinnavaia, T. J. Mesoporous titanosilicate molecular sieves prepared at ambient temperature by electrostatic (S+I, S+XI+) and neutral (S0I0) assembly pathways: A comparison of physical properties and catalytic activity for peroxide oxidations. J. Am. Chem. Soc. 1996, 118, 9164–9171.Google Scholar
  67. [67]
    Corma, A.; Navarro, M. T.; Perez-Pariente, J.; Sanchez, F. Zeolites and Related Microporous Materials: State of the Art. Stud. Surf. Sci. Catal. 1994, 84, 69–75.Google Scholar
  68. [68]
    Tozzola, G.; Mantegazza, M. A.; Ranghino, G.; Petrini, G.; Bordiga, S.; Ricchiardi, G.; Lamberti, C.; Zulian, R.; Zecchina, A. On the structure of the active site of Ti-silicalite in reactions with hydrogen peroxide: A vibrational and computational study. J. Catal. 1998, 179, 64–71.Google Scholar
  69. [69]
    Bordiga, S.; Bonino, F.; Damin, A.; Lamberti, C. Reactivity of Ti(IV) species hosted in TS-1 towards H2O2-H2O solutions investigated by ab initio cluster and periodic approaches combined with experimental XANES and EXAFS data: A review and new highlights. Phys. Chem. Chem. Phys. 2007, 9, 4854–4878.PubMedGoogle Scholar
  70. [70]
    Chen, H.; Dai, W. L.; Deng, J. F.; Fan, K. N. Novel heterogeneous W-doped MCM-41 catalyst for highly selective oxidation of cyclopentene to glutaraldehyde by aqueous H2O2. Catal. Lett. 2002, 81, 131–136.Google Scholar
  71. [71]
    Yang, X. L.; Dai, W. L.; Gao, R. H.; Chen, H.; Li, H. X.; Cao, Y.; Fan, K. N. Synthesis, characterization and catalytic application of mesoporous W-MCM-48 for the selective oxidation of cyclopentene to glutaraldehyde. J. Mol. Catal. A-Chem. 2005, 241, 205–214.Google Scholar
  72. [72]
    Reddy, K. M.; Moudrakovski, I.; Sayari, A. Synthesis of mesoporous vanadium silicate molecular-sieves. J. Chem. Soc. Chem. Commun. 1994, 1059–1060.Google Scholar
  73. [73]
    Reddy, J. S.; Sayari, A. Room-temperature synthesis of a highly-active vanadium-containing mesoporous molecular-sieve, V-HMS. J. Chem. Soc. Chem. Commun. 1995, 2231–2232.Google Scholar
  74. [74]
    Schlogl, R.; Abd Hamid, S. B. Nanocatalysis: Mature science revisited or something really new? Angew. Chem. Int. Edit. 2004, 43, 1628–1637.Google Scholar
  75. [75]
    Garcia, C.; Zhang, Y. M.; DiSalvo, F.; Wiesner, U. Mesoporous aluminosilicate materials with super-paramagnetic γ-Fe2O3 particles embedded in the walls. Angew. Chem. Int. Edit. 2003, 42, 1526–1530.Google Scholar
  76. [76]
    Dong, W. Y.; Sun, Y. J.; Lee, C. W.; Hua, W. M.; Lu, X. C.; Shi, Y. F.; Zhang, S. C.; Chen, J. M.; Zhao, D. Y. Controllable and repeatable synthesis of thermally stable anatase nanocrystal-silica composites with highly ordered hexagonal mesostructures. J. Am. Chem. Soc. 2007, 129, 13894–13904.PubMedGoogle Scholar
  77. [77]
    Corma, A.; Chane-Ching, J. Y.; Airiau, M.; Martinez, C. Synthesis and catalytic properties of thermally and hydrothermally stable, high-surface-area SiO2-CeO2 mesostructured composite materials and their application for the removal of sulfur compounds from gasoline. J. Catal. 2004, 224, 441–448.Google Scholar
  78. [78]
    Hu, J. C.; Chen, L. F.; Zhu, K. K.; Suchopar, A.; Richards, R. Aerobic oxidation of alcohols catalyzed by gold nanoparticles confined in the walls of mesoporous silica. Catal. Today 2007, 122, 277–283.Google Scholar
  79. [79]
    Wolf, A.; Schuth, F. A systematic study of the synthesis conditions for the preparation of highly active gold catalysts. Appl. Catal. A-Chem 2002, 226, 1–13.Google Scholar
  80. [80]
    Zhu, K. K.; Hu, J. C.; Richards, R. Aerobic oxidation of cyclohexane by gold nanoparticles immobilized upon mesoporous silica. Catal. Lett. 2005, 100, 195–199.Google Scholar
  81. [81]
    Song, H.; Rioux, R. M.; Hoefelmeyer, J. D.; Komor, R.; Niesz, K.; Grass, M.; Yang, P. D.; Somorjai, G. A. Hydrothermal growth of mesoporous SBA-15 silica in the presence of PVP-stabilized Pt nanoparticles: Synthesis, characterization, and catalytic properties. J. Am. Chem. Soc. 2006, 128, 3027–3037.PubMedGoogle Scholar
  82. [82]
    Schuth, F. Non-siliceous mesostructured and mesoporous materials. Chem. Mater. 2001, 13, 3184–3195.Google Scholar
  83. [83]
    Yang, P. D.; Zhao, D. Y.; Margolese, D. I.; Chmelka, B. F.; Stucky, G. D. Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework. Chem. Mater. 1999, 11, 2813–2826.Google Scholar
  84. [84]
    Yuan, Q.; Yin, A. X.; Luo, C.; Sun, L. D.; Zhang, Y. W.; Duan, W. T.; Liu, H. C.; Yan, C. H. Facile synthesis for ordered mesoporous γ-aluminas with high thermal stability. J. Am. Chem. Soc. 2008, 130, 3465–3472.PubMedGoogle Scholar
  85. [85]
    Yoshitake, H.; Tatsumi, T. Vanadium oxide incorporated into mesoporous titania with a BET surface area above 1000 m2/g: Preparation, spectroscopic characterization, and catalytic oxidation. Chem. Mater. 2003, 15, 1695–1702.Google Scholar
  86. [86]
    Kapoor, M. P.; Ichihashi, Y.; Kuraoka, K.; Matsumura, Y. Catalytic methanol decomposition over palladium deposited on thermally stable mesoporous titanium oxide. J. Mol. Catal. A-Chem. 2003, 198, 303–308.Google Scholar
  87. [87]
    Serre, C.; Auroux, A.; Gervasini, A.; Hervieu, M.; Ferey, G. Hexagonal and cubic thermally stable mesoporous tin(IV) phosphates with acidic and catalytic properties. Angew. Chem. -Int. Edit. 2002, 41, 1594–1597.Google Scholar
  88. [88]
    Bhaumik, A.; Inagaki, S. Mesoporous titanium phosphate molecular sieves with ion-exchange capacity. J. Am. Chem. Soc. 2001, 123, 691–696.PubMedGoogle Scholar
  89. [89]
    Onaka, M.; Oikawa, T. Olefin metathesis over mesoporous alumina-supported rhenium oxide catalyst. Chem. Lett. 2002, 850–851.Google Scholar
  90. [90]
    Velu, S.; Kapoor, M. P.; Inagaki, S.; Suzuki, K. Vapor phase hydrogenation of phenol over palladium supported on mesoporous CeO2 and ZrO2. Appl. Catal. A-Chem 2003, 245, 317–331.Google Scholar
  91. [91]
    Farrusseng, D.; Schlichte, K.; Spliethoff, B.; Wingen, A.; Kaskel, S.; Bradley, J. S.; Schuth, F. Pore-size engineering of silicon imido nitride for catalytic applications. Angew. Chem. Int. Edit. 2001, 40, 4204–4207.Google Scholar
  92. [92]
    Wang, D. H.; Choi, D. W.; Yang, Z. G.; Viswanathan, V. V.; Nie, Z. M.; Wang, C. M.; Song, Y. J.; Zhang, J. G.; Liu, J. Synthesis and Li-ion insertion properties of highly crystalline mesoporous rutile TiO2. Chem. Mater. 2008, 20, 3435–3442.Google Scholar
  93. [93]
    Wang, D. H.; Ma, Z.; Dai, S.; Liu, J.; Nie, Z. M.; Engelhard, M. H.; Huo, Q. S.; Wang, C. M.; Kou, R. Lowtemperature synthesis of tunable mesoporous crystalline transition metal oxides and applications as Au catalyst supports. J. Phys. Chem. C 2008, 112, 13499–13509.Google Scholar
  94. [94]
    Wong, M. S.; Jeng, E. S.; Ying, J. Y. Supramolecular templating of thermally stable crystalline mesoporous metal oxides using nanoparticulate precursors. Nano Lett. 2001, 1, 637–642.ADSGoogle Scholar
  95. [95]
    Chane-Ching, J. Y.; Cobo, F.; Aubert, D.; Harvey, H. G.; Airiau, M.; Corma, A. A general method for the synthesis of nanostructured large-surface-area materials through the self-assembly of functionalized nanoparticles. Chem-Eur. J. 2005, 11, 979–987.Google Scholar
  96. [96]
    Corma, A.; Atienzar, P.; Garcia, H.; Chane-Ching, J. Y. Hierarchically mesostructured doped CeO2 with potential for solar-cell use. Nat. Mater. 2004, 3, 394–397.PubMedADSGoogle Scholar
  97. [97]
    Corma, A.; Domine, M. E. Gold supported on a mesoporous CeO2 matrix as an efficient catalyst in the selective aerobic oxidation of aldehydes in the liquid phase. Chem. Commun. 2005, 4042–4044.Google Scholar
  98. [98]
    Pinnavaia, T. J. Intercalated clay catalysts. Science 1983, 220, 365–371.PubMedADSGoogle Scholar
  99. [99]
    Wang, L. Z.; Ebina, Y.; Takada, K.; Kurashima, K.; Sasaki, T. A new mesoporous manganese oxide pillared with double layers of alumina. Adv. Mater. 2004, 16, 1412–1416.Google Scholar
  100. [100]
    Kim, T. W.; Hwang, S. J.; Jhung, S. H.; Chang, J. S.; Park, H.; Choi, W.; Choy, J. H. Bifunctional heterogeneous catalysts for selective epoxidation and visible light driven photolysis: Nickel oxide-containing porous nanocomposite. Adv. Mater. 2008, 20, 539–542.Google Scholar
  101. [101]
    Ma, Y.; Suib, S. L.; Ressler, T.; Wong, J.; Lovallo, M.; Tsapatsis, M. Synthesis of porous CrOx pillared octahedral layered manganese oxide materials. Chem. Mater. 1999, 11, 3545–3554.Google Scholar
  102. [102]
    Yamanaka, S.; Kunii, K.; Xu, Z. L. Preparation and adsorption properties of microporous manganese titanate pillared with silica. Chem. Mater. 1998, 10, 1931–1936.Google Scholar
  103. [103]
    Wong, S. T.; Cheng, S. Synthesis and characterization of pillared buserite. Inorg. Chem. 1992, 31, 1165–1172.Google Scholar
  104. [104]
    Sasaki, T.; Watanabe, M. Osmotic swelling to exfoliation. Exceptionally high degrees of hydration of a layered titanate. J. Am. Chem. Soc. 1998, 120, 4682–4689.Google Scholar
  105. [105]
    Liu, Z. H; Ooi, K.; Kanoh, H.; Tang, W. P.; Tomida, T. Swelling and delamination behaviors of birnessitetype manganese oxide by intercalation of tetraalkylammoniumions. Langmuir 2000, 16, 4154–4164.Google Scholar
  106. [106]
    Hata, H.; Kobayashi, Y.; Salama, M.; Malek, R.; Mallouk, T. E. pH-dependent intercalation of gold nanoparticles into a synthetic fluoromica modified with poly(allylamine). Chem. Mater. 2007, 19, 6588–6596.Google Scholar
  107. [107]
    Hata, H.; Kubo, S.; Kobayashi, Y.; Mallouk, T. E. Intercalation of well-dispersed gold nanoparticles into layered oxide nanosheets through intercalation of a polyamine. J. Am. Chem. Soc. 2007, 129, 3064–3065.PubMedGoogle Scholar
  108. [108]
    Liu, Y.; Zhang, W. Z.; Pinnavaia, T. J. Steam-stable aluminosilicate mesostructures assembled from zeolite type Y seeds. J. Am. Chem. Soc. 2000, 122, 8791–8792.Google Scholar
  109. [109]
    Liu, Y.; Zhang, W. Z.; Pinnavaia, T. J. Steam-stable MSU-S aluminosilicate mesostructures assembled from zeolite ZSM-5 and zeolite beta seeds. Angew. Chem. Int. Edit. 2001, 40, 1255–1258.Google Scholar
  110. [110]
    Zhang, Z. T.; Han, Y.; Zhu, L.; Wang, R. W.; Yu, Y.; Qiu, S. L.; Zhao, D. Y.; Xiao, F. S. Strongly acidic and high-temperature hydrothermally stable mesoporous aluminosilicates with ordered hexagonal structure. Angew. Chem. Int. Edit. 2001, 40, 1258–1262.Google Scholar
  111. [111]
    Liu, J.; Shin, Y.; Nie, Z. M.; Chang, J. H.; Wang, L. Q.; Fryxell, G. E.; Samuels, W. D.; Exarhos, G. J. Molecular assembly in ordered mesoporosity: A new class of highly functional nanoscale materials. J. Phys. Chem. A 2000, 104, 8328–8339.Google Scholar
  112. [112]
    Margelefsky, E. L.; Zeidan, R. K.; Dufaud, V.; Davis, M. E. Organized surface functional groups: Cooperative catalysis via thiol/sulfonic acid pairing. J. Am. Chem. Soc. 2007, 129, 13691–13697.PubMedGoogle Scholar
  113. [113]
    Dufaud, V.; Davis, M. E. Design of heterogeneous catalysts via multiple active site positioning in organic-inorganic hybrid materials. J. Am. Chem. Soc. 2003, 125, 9403–9413.PubMedGoogle Scholar
  114. [114]
    Li, C.; Zhang, H. D.; Jiang, D. M.; Yang, Q. H. Chiral catalysis in nanopores of mesoporous materials. Chem. Commun. 2007, 547–558.Google Scholar
  115. [115]
    Raja, R.; Thomas, J. M.; Jones, M. D.; Johnson, B. F. G.; Vaughan, D. E. W. Constraining asymmetric organometallic catalysts within mesoporous supports boosts their enantioselectivity. J. Am. Chem. Soc. 2003, 125, 14982–14983.PubMedGoogle Scholar
  116. [116]
    Kaleta, W.; Nowinska, K. Immobilisation of heteropoly anions in Si-MCM-41 channels by means of chemical bonding to aminosilane groups. Chem. Commun. 2001, 535–536.Google Scholar
  117. [117]
    Chen, L. F.; Zhu, K.; Bi, L. H.; Suchopar, A.; Reicke, M.; Mathys, G.; Jaensch, H.; Kortz, U.; Richards, R. M. Solvent-free aerobic oxidation of n-alkane by iron(III)-substituted polyoxotungstates immobilized on SBA-15. Inorg. Chem. 2007, 46, 8457–8459.PubMedGoogle Scholar
  118. [118]
    Pope, M. T.; Muller, A. Polyoxometalate chemistry—An old field with new dimensions in several disciplines. Angew. Chem. Int. Ed. Engl. 1991, 30, 34–48.Google Scholar
  119. [119]
    Pope, M. T. Heteropoly and Isopoly Oxometalates; Springer-Verlag: Berlin, 1983.Google Scholar
  120. [120]
    Volkmer, D.; Du Chesne, A.; Kurth, D. G.; Schnablegger, H.; Lehmann, P.; Koop, M. J.; Muller, A. Toward nanodevices: Synthesis and characterization of the nanoporous surfactant-encapsulated Keplerate (DODA)40(NH4)2[(H2O)n⊂Mo132O372(CH3COO)30(H2O)72]. J. Am. Chem. Soc. 2000, 122, 1995–1998.Google Scholar
  121. [121]
    Fan, D. W.; Jia, X. F.; Tang, P. Q.; Hao, J. C.; Liu, T. B. Self-patterning of hydrophobic materials into highly ordered honeycomb nanostructures at the air/water interface. Angew. Chem. Int. Edit. 2007, 46, 3342–3345.Google Scholar
  122. [122]
    Neumann, R. Polyoxometallate complexes in organic oxidation chemistry. Prog. Inorg. Chem. 1998; 47, 317–370.Google Scholar
  123. [123]
    Kozhevnikov, I. V. Catalysis by heteropoly acids and multicomponent polyoxometalates in liquid-phase reactions. Chem. Rev. 1998, 98, 171–198.PubMedGoogle Scholar
  124. [124]
    Hill, C. L.; Prossermccartha, C. M. Homogeneous catalysis by transition-metal oxygen anion clusters. Coord. Chem. Rev. 1995, 143, 407–455.Google Scholar
  125. [125]
    Mizuno, N.; Misono, M. Heterogenous catalysis. Chem. Rev. 1998, 98, 199–217.PubMedGoogle Scholar
  126. [126]
    Mizuno, N.; Yamaguchi, K.; Kamata, K. Epoxidation of olefins with hydrogen peroxide catalyzed by polyoxometalates. Coord. Chem. Rev. 2005, 249, 1944–1956.Google Scholar
  127. [127]
    Liu, Y. Y.; Koyano, G.; Na, K.; Misono, M. Isomerizations of n-pentane and n-hexane over cesium hydrogen salt of 12-tungstophosphoric acid promoted by platinum. Appl. Catal. A-Gen. 1998, 166, L263–L265.Google Scholar
  128. [128]
    Misono, M. Heterogeneous catalysis by heteropoly compounds of molybdenum and tungsten. Catal. Rev.-Sci. Eng. 1987, 29, 269–321.Google Scholar
  129. [129]
    Yamada, T.; Yoshinaga, Y.; Okuhara, T. Synthesis and characterization of an ultramicroporous cesium hydrogen salt of 12-tungstophosphoric acid, Cs2.1H0.9PW12O40. Bull. Chem. Soc. Jpn. 1998, 71, 2727–2734.Google Scholar
  130. [130]
    Rhule, J. T.; Neiwert, W. A.; Hardcastle, K. I.; Do, B. T.; Hill, C. L. Ag5PV2Mo10O40, a heterogeneous catalyst for air-based selective oxidation at ambient temperature. J. Am. Chem. Soc. 2001, 123, 12101–12102.PubMedGoogle Scholar
  131. [131]
    Yamaguchi, K.; Mizuno, N. Heterogeneously catalyzed liquid-phase oxidation of alkanes and alcohols with molecular oxygen. New J. Chem. 2002, 26, 972–974.Google Scholar
  132. [132]
    Xi, Z. W.; Zhou, N.; Sun, Y.; Li, K. L. Reaction-controlled phase-transfer catalysis for propylene epoxidation to propylene oxide. Science 2001, 292, 1139–1141.Google Scholar
  133. [133]
    Xi, Z. W.; Wang, H. P.; Sun, Y.; Zhou, N.; Cao, G. Y.; Li, M. Direct epoxidation of olefins catalyzed by heteropolyoxometalates with molecular oxygen and recyclable reductant. J. Mol. Catal. A-Chem. 2001, 168, 299–301.Google Scholar
  134. [134]
    Uchida, S.; Hashimoto, M.; Mizuno, N. A breathing ionic crystal displaying selective binding of small alcohols and nitriles: K3[Cr3O(OOCH)6(H2O)3][alpha-SiW12O40]·16H2O. Angew. Chem. Int. Edit. 2002, 41, 2814–2817.Google Scholar
  135. [135]
    Uchida, S.; Mizuno, N. Zeotype ionic crystal of Cs5[Cr3O(OOCH)6(H2O)3][(alpha-CoW12O40]·7.5H2O with shape-selective adsorption of water. J. Am. Chem. Soc. 2004, 126, 1602–1603.PubMedGoogle Scholar
  136. [136]
    Uchida, S.; Mizuno, N. Unique guest-inclusion properties of a breathing ionic crystal of K3[Cr3O(OOCH)6(H2O)3][alpha-SiW12O40]·16H2O. Chem.-Eur. J. 2003, 9, 5850–5857.Google Scholar
  137. [137]
    Uchida, S.; Kawamoto, R.; Mizuno, N. Recognition of small polar molecules with an ionic crystal of alpha-Keggin-type polyoxometalate with a macrocation. Inorg. Chem. 2006, 45, 5136–5144.PubMedGoogle Scholar
  138. [138]
    Kawamoto, R.; Uchida, S.; Mizuno, N. Amphiphilic guest sorption of K2[Cr3O(OOCC2H5)6(H2O)3]2[alpha-SiW12O40] ionic crystal. J. Am. Chem. Soc. 2005, 127, 10560–10567.PubMedGoogle Scholar
  139. [139]
    Uchida, S.; Kawamoto, R.; Akatsuka, T.; Hikichi, S.; Mizuno, N. Structures and sorption properties of ionic crystals of macrocation-Dawson-type polyoxometalates with different charges. Chem. Mater. 2005, 17, 1367–1375.Google Scholar
  140. [140]
    Uchida, S.; Mizuno, N. Design and syntheses of nano-structured ionic crystals with selective sorption properties. Coord. Chem. Rev. 2007, 251, 2537–2546.Google Scholar
  141. [141]
    Okun, N. M.; Anderson, T. M.; Hill, C. L. [(Fe-III(OH2)2)3(A-alpha-PW9O34)2]9− on cationic silica nanoparticles, a new type of material and efficient heterogeneous catalyst for aerobic oxidations. J. Am. Chem. Soc. 2003, 125, 3194–3195.PubMedGoogle Scholar
  142. [142]
    Okun, N. M.; Ritorto, M. D.; Anderson, T. M.; Apkarian, R. P.; Hill, C. L. Polyoxometalates on cationic silica nanoparticles. Physicochemical properties of an electrostatically bound multi-iron catalyst. Chem. Mater. 2004, 16, 2551–2558.Google Scholar
  143. [143]
    Okun, N. M.; Anderson, T. M.; Hill, C. L. Polyoxometalates on cationic silica—Highly selective and efficient O2/air-based oxidation of 2-chloroethyl ethyl sulfide at ambient temperature. J. Mol. Catal. A-Chem. 2003, 197, 283–290.Google Scholar
  144. [144]
    Kwon, T.; Tsigdinos, G. A.; Pinnavaia, T. J. Pillaring of layered double hydroxides (LDHs) by polyoxometalate anions. J. Am. Chem. Soc. 1988, 110, 3653–3654.Google Scholar
  145. [145]
    Rives, V.; Ulibarri, M. A. Layered double hydroxides (LDH) intercalated with metal coordination compounds and oxometalates. Coord. Chem. Rev. 1999, 181, 61–120.Google Scholar
  146. [146]
    Liu, P.; Wang, H.; Feng, Z. C.; Ying, P. L.; Li, C. Direct immobilization of self-assembled polyoxometalate catalyst in layered double hydroxide for heterogeneous epoxidation of olefins. J. Catal. 2008, 256, 345–348.Google Scholar
  147. [147]
    Centi, G.; Perathoner, S. Catalysis by layered materials: A review. Micropor. Mesopor. Mat. 2008, 107, 3–15.Google Scholar
  148. [148]
    Jana, S. K.; Kubota, Y.; Tatsumi, T. Cobalt-substituted polyoxometalate pillared hydrotalcite: Synthesis and catalysis in liquid-phase oxidation of cyclohexanol with molecular oxygen. J. Catal. 2008, 255, 40–47.Google Scholar
  149. [149]
    Liu, Y. Y.; Murata, K.; Hanaoka, T.; Inaba, M.; Sakanishi, K. Syntheses of new peroxo-polyoxometalates intercalated layered double hydroxides for propene epoxidation by molecular oxygen in methanol. J. Catal. 2007, 248, 277–287.Google Scholar
  150. [150]
    Kwon, T.; Pinnavaia, T. J. Synthesis and properties of anionic clays pillared by [XM12O40]n-Keggin ions. J. Mol. Catal. 1992, 74, 23–33.Google Scholar
  151. [151]
    Kwon, T.; Pinnavaia, T. J. Pillaring of a layered double hydroxide by polyoxometalates with Keggin-ion structures. Chem. Mater. 1989, 1, 381–383.Google Scholar
  152. [152]
    Tomalia, D. A.; Naylor, A. M.; Goddard, W. A. Starburst dendrimers-molecular-level control of size, shape, surface-chemistry, topology, and flexibility from atoms to macroscopic matter. Angew. Chem. Int. Edit. Engl. 1990, 29, 138–175.Google Scholar
  153. [153]
    Astruc, D.; Chardac, F. Dendritic catalysts and dendrimers in catalysis. Chem. Rev. 2001, 101, 2991–3023.PubMedGoogle Scholar
  154. [154]
    Twyman, L. J.; King, A. S. H.; Martin, I. K. Catalysis inside dendrimers. Chem. Soc. Rev. 2002, 31, 69–82.PubMedGoogle Scholar
  155. [155]
    Scott, R. W. J.; Wilson, O. M.; Oh, S. K.; Kenik, E. A.; Crooks, R. M. Bimetallic palladium-gold dendrimerencapsulated catalysts. J. Am. Chem. Soc. 2004, 126, 15583–15591.PubMedGoogle Scholar
  156. [156]
    Brunner, H. Dendrizymes-expanded ligands for enantioselective catalysis. J. Organomet. Chem. 1995, 500, 39–46.Google Scholar
  157. [157]
    Niu, Y. H.; Yeung, L. K.; Crooks, R. M. Size-selective hydrogenation of olefins by dendrimer-encapsulated palladium nanoparticles. J. Am. Chem. Soc. 2001, 123, 6840–6846.Google Scholar
  158. [158]
    Balogh, L.; Tomalia, D. A. Poly(amidoamine) dendrimertemplated nanocomposites. 1. Synthesis of zerovalent copper nanoclusters. J. Am. Chem. Soc. 1998, 120, 7355–7356.Google Scholar
  159. [159]
    Scott, R. W. J.; Wilson, O. M.; Crooks, R. M. Synthesis, characterization, and applications of dendrimerencapsulated nanoparticles. J. Phys. Chem. B 2005, 109, 692–704.PubMedGoogle Scholar
  160. [160]
    Wilson, O. M.; Scott, R. W. J.; Garcia-Martinez, J. C.; Crooks, R. M. Synthesis, characterization, and structure-selective extraction of 1–3-nm diameter AuAg dendrimer-encapsulated bimetallic nanoparticles. J. Am. Chem. Soc. 2005, 127, 1015–1024.PubMedGoogle Scholar
  161. [161]
    Wang, G. Y.; Liu, X. Y.; Zhao, G. Synthesis of dendrimer-supported prolinols and their application in enantioselective reduction of ketones. Synlett 2006, 1150–1154.Google Scholar
  162. [162]
    Chung, Y. M.; Rhee, H. K. Design of silica-supported dendritic chiral catalysts for the improvement of enantio selective addition of diethylzinc to benzaldehyde. Catal. Lett. 2002, 82, 249–253.Google Scholar
  163. [163]
    Chung, Y. M.; Rhee, H. K. Dendritic chiral auxiliaries on silica: A new heterogeneous catalyst for enantioselective addition of diethylzinc to benzaldehyde. Chem. Commun. 2002, 238–239.Google Scholar
  164. [164]
    Scott, R. W. J.; Sivadinarayana, C.; Wilson, O. M.; Yan, Z.; Goodman, D. W.; Crooks, R. M. Titania-supported PdAu bimetallic catalysts prepared from dendrimerencapsulated nanoparticle precursors. J. Am. Chem. Soc. 2005, 127, 1380–1381.PubMedGoogle Scholar
  165. [165]
    Zeng, H. D.; Newkome, G. R.; Hill, C. L. Poly(polyoxometalate) dendrimers: Molecular prototypes of new catalytic materials. Angew. Chem. Int. Edit. 2000, 39, 1771–1774.Google Scholar
  166. [166]
    Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K. Formation of titanium oxide nanotube. Langmuir 1998, 14, 3160–3163.Google Scholar
  167. [167]
    Sun, X. M.; Li, Y. D. Synthesis and characterization of ion-exchangeable titanate nanotubes. Chem. -Eur. J. 2003, 9, 2229–2238.Google Scholar
  168. [167]
    Bavykin, D. V.; Lapkin, A. A.; Plucinski, P. K.; Friedrich, J. M.; Walsh, F. C. TiO2 nanotube-supported ruthenium(III) hydrated oxide: A highly active catalyst for selective oxidation of alcohols by oxygen. J. Catal. 2005, 235, 10–17.Google Scholar
  169. [169]
    Bavykin, D. V.; Lapkin, A. A.; Plucinski, P. K.; Torrente-Murciano, L.; Friedrich, J. M.; Walsh, F. C. Deposition of Pt, Pd, Ru, and Au on the surfaces of titanate nanotubes. Top. Catal. 2006, 39, 151–160.Google Scholar
  170. [170]
    Xu, J. C.; Lu, M.; Guo, X. Y.; Li, H. L. Zinc ions surface-doped titanium dioxide nanotubes and its photocatalysis activity for degradation of methyl orange in water. J. Mol. Catal. A-Chem. 2005, 226, 123–127.Google Scholar
  171. [171]
    Huang, P. X.; Wu, F.; Zhu, B. L.; Gao, X. P.; Zhu, H. Y.; Yan, T. Y.; Huang, W. P.; Wu, S. H.; Song, D. Y. CeO2 nanorods and gold nanocrystals supported on CeO2 nanorods as catalyst. J. Phys. Chem. B 2005, 109, 19169–19174.PubMedGoogle Scholar
  172. [172]
    Wu, J. J.; Tseng, C. H. Photocatalytic properties of nc-Au/ZnO nanorod composites. Appl. Catal. B-Environ. 2006, 66, 51–57.Google Scholar
  173. [173]
    Tasker, P. W. The stability of ionic-crystal surfaces. J. Phys. C-Solid State Phys. 1979, 12, 4977–4984.ADSGoogle Scholar
  174. [174]
    Arita, R.; Tanida, Y.; Entani, S.; Kiguchi, M.; Saiki, K.; Aoki, H. Polar surface engineering in ultrathin MgO(111)/Ag(111): Possibility of a metal-insulator transition and magnetism. Phys. Rev. B 2004, 69, 235423–235423.ADSGoogle Scholar
  175. [175]
    Plass, R.; Egan, K.; Collazo-Davila, C.; Grozea, D.; Landree, E.; Marks, L. D.; Gajdardziska-Josifovska, M. Cyclic ozone identified in magnesium oxide (111) surface reconstructions. Phys. Rev. Lett. 1998, 81, 4891–4894.ADSGoogle Scholar
  176. [176]
    Itoh, H.; Utamapanya, S.; Stark, J. V.; Klabunde, K. J.; Schlup, J. R. Nanoscale metal-oxide particles as chemical reagents-intrinsic effects of particle-size on hydroxyl content and on reactivity and acid-base properties of ultrafine magnesium oxide. Chem. Mater. 1993, 5, 71–77.Google Scholar
  177. [177]
    Stankic, S.; Muller, M.; Diwald, O.; Sterrer, M.; Knozinger, E.; Bernardi, J. Size-dependent optical properties of MgO nanocubes. Angew. Chem. Int. Edit. 2005, 44, 4917–4920.Google Scholar
  178. [178]
    Zhu, K. K.; Hu, J. C.; Kubel, C.; Richards, R. Efficient preparation and catalytic activity of MgO(111) nanosheets. Angew. Chem. Int. Edit. 2006, 45, 7277–7281.Google Scholar
  179. [179]
    Hu, J. C.; Zhu, K.; Chen, L. F.; Kubel, C.; Richards, R. MgO(111) nanosheets with unusual surface activity. J. Phys. Chem. C 2007, 111, 12038–12044.Google Scholar
  180. [180]
    Niederberger, M.; Garnweitner, G.; Pinna, N.; Antonietti, M. Nonaqueous and halide-free route to crystalline BaTiO3, SrTiO3, and (Ba,Sr)TiO3 nanoparticles via a mechanism involving C-C bond formation. J. Am. Chem. Soc. 2004, 126, 9120–9126.PubMedGoogle Scholar
  181. [181]
    Niederberger, M.; Bard, M. H.; Stucky, G. D. Benzyl alcohol and transition metal chlorides as a versatile reaction system for the nonaqueous and lowtemperature synthesis of crystalline nano-objects with controlled dimensionality. J. Am. Chem. Soc. 2002, 124, 13642–13643.PubMedGoogle Scholar
  182. [182]
    Hu, J. C.; Zhu, K. K.; Chen, L. F.; Yang, H. J.; Li, Z.; Suchopar, A.; Richards, R. Preparation and surface activity of single-crystalline NiO(111) nanosheets with hexagonal holes: A semiconductor nanospanner. Adv. Mater. 2008, 20, 267–271.Google Scholar

Copyright information

© Tsinghua University Press and Springer Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Pacific Northwest National LaboratoryRichland, WashingtonUSA

Personalised recommendations