Nano Research

, Volume 1, Issue 6, pp 490–496 | Cite as

A nano- and micro- integrated protein chip based on quantum dot probes and a microfluidic network

  • Juan Yan
  • Mei Hu
  • Di Li
  • Yao He
  • Rui Zhao
  • Xingyu Jiang
  • Shiping SongEmail author
  • Lianhui WangEmail author
  • Chunhai FanEmail author
Open Access
Research Article


A novel nano- and micro-integrated protein chip (NMIPC) that can detect proteins with ultrahigh sensitivity has been fabricated. A microfluidic network (µFN) was used to construct the protein chips, which allowed facile patterning of proteins and subsequent biomolecular recognition. Aqueous phase-synthesized, water-soluble fluorescent CdTe/CdS core-shell quantum dots (aqQDs), having high quantum yield and high photostability, were used as the signaling probe. Importantly, it was found that aqQDs were compatible with microfluidic format assays, which afforded highly sensitive protein chips for cancer biomarker assays.


Quantum dots microfluidics carcinoma embryonic antigen (CEA) microarray polydimethylsiloxane (PDMS) 

Supplementary material

12274_2008_8052_MOESM1_ESM.pdf (350 kb)
Supplementary material, approximately 352 KB.


  1. [1]
    Ekins, R.; Chu, F. W. Microarrays: Their origins and applications. Trends Biotechnol. 1999, 17, 217–218.PubMedCrossRefGoogle Scholar
  2. [2]
    MacBeath, G.; Schreiber, S. L. Printing proteins as microarrays for high-throughput function determination. Science 2000, 289, 1760–1763.PubMedADSGoogle Scholar
  3. [3]
    Lueking, A.; Horn, M.; Eickhoff, H.; Bussow, K.; Lehrach, H.; Walter, G. Protein microarrays for gene expression and antibody screening. Anal. Biochem. 1999, 270, 103–111.PubMedCrossRefGoogle Scholar
  4. [4]
    Hultschig, C.; Kreutzberger, J.; Seitz, H.; Konthur, Z.; Bussow, K.; Lehrach, H. Recent advances of protein microarrays. Curr. Opin. Chem. Biol. 2006, 10, 4–10.PubMedCrossRefGoogle Scholar
  5. [5]
    Sauer, S.; Lange, B. M.; Gobom, J.; Nyarsik, L.; Seitz, H.; Lehrach, H. Miniaturization in functional genomics and proteomics. Nat. Rev. Genet. 2005, 6, 465–476.PubMedCrossRefGoogle Scholar
  6. [6]
    Templin, M. F.; Stoll, D.; Schwenk, J. M.; Potz, O.; Kramer, S.; Joos, T. O. Protein microarrays: Promising tools for proteomic research. Proteomics 2003, 3, 2155–2166.PubMedCrossRefGoogle Scholar
  7. [7]
    Haab, B. B. Methods and applications of antibody microarrays in cancer research. Proteomics 2003, 3, 2116–2122.PubMedCrossRefGoogle Scholar
  8. [8]
    Eisenstein, M. Protein arrays — Growing pains. Nature 2006, 444, 959 962.PubMedCrossRefADSGoogle Scholar
  9. [9]
    Bruchez, M., Jr.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Semiconductor nanocrystals as fluorescent biological labels. Science 1998, 281, 2013–2016.PubMedCrossRefADSGoogle Scholar
  10. [10]
    Chan, W. C.; Nie, S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998, 281, 2016–2018.PubMedCrossRefADSGoogle Scholar
  11. [11]
    Medintz, I. L.; Uyeda, H. T.; Goldman, E. R.; Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 2005, 4, 435–446.PubMedCrossRefADSGoogle Scholar
  12. [12]
    Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005, 307, 538–544.PubMedCrossRefADSGoogle Scholar
  13. [13]
    Peng, X. G.; Manna, L.; Yang, W. D.; Wickham, J.; Scher, E.; Kadavanich, A.; Alivisatos, A. P. Shape control of CdSe nanocrystals. Nature 2000, 404, 59–61.PubMedCrossRefADSGoogle Scholar
  14. [15]
    Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271, 933–937.CrossRefADSGoogle Scholar
  15. [16]
    Battaglia, D.; Peng, X. G. Formation of high quality InP and InAs nanocrystals in a noncoordinating solvent. Nano Lett. 2002, 2, 1027–1030.CrossRefGoogle Scholar
  16. [17]
    Tang, Z. Y.; Kotov, N. A.; Giersig, M. Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science 2002, 297, 237–240PubMedCrossRefADSGoogle Scholar
  17. [18]
    Qu, L.; Peng, X. G. Control of photoluminescence properties of CdSe nanocrystals in growth. J. Am. Chem. Soc. 2002, 124, 2049–2055.PubMedCrossRefGoogle Scholar
  18. [19]
    Bakalova, R.; Zhelev, Z.; Ohba, H.; Baba, Y. Quantum dot-based western blot technology for ultrasensitive detection of tracer proteins. J. Am. Chem. Soc. 2005, 127, 9328–9329.PubMedCrossRefGoogle Scholar
  19. [20]
    Wuister, S. F.; Swart, I.; Driel, F. V.; Hickey, S. G.; Donega, C. M. Highly luminescent water-soluble CdTe quantum dots. Nano Lett. 2003, 3, 503–507.CrossRefGoogle Scholar
  20. [21]
    Wang, Y.; Tang, Z.; Correa-Duarte, M. A.; Pastoriza-Santos, I.; Giersig, M.; Kotov, N. A.; Liz-Marzan, L. M. Mechanism of strong luminescence photoactivation of citrate-stabilized water-soluble nanoparticles with CdSe cores. J. Phys. Chem. B 2004, 108, 15461–15469.CrossRefGoogle Scholar
  21. [22]
    Bao, H.; Gong, Y.; Li, Z.; Gao, M. Enhancement effect of illumination on the photoluminescence of water-soluble CdTe nanocrystals: Toward highly fluorescent CdTe/CdS core-shell structure. Chem. Mater. 2004, 16, 3853–3859.CrossRefGoogle Scholar
  22. [23]
    He, Y.; Lu, H.; Sai, L.; Su, Y.; Hu, M.; Fan, C.; Huang, W.; Wang, L. Enhancement effect of illumination on the photoluminescence of water-soluble CdTe nanocrystals: Toward highly fluorescent CdTe/CdS core-shell structure. Adv. Mater. 2008, 20, 3416–3421.CrossRefGoogle Scholar
  23. [24]
    He, Y.; Lu, H.; Sai, L.; Lai, W.; Fan, Q.; Wang, L.; Huang, W. Microwave-assisted growth and characterization of water-dispersed CdTe/CdS core-shell nanocrystals with high photoluminescence. J. Phys. Chem. B 2006, 110, 13370–13374.PubMedCrossRefGoogle Scholar
  24. [25]
    Balboni, I.; Chan, S. M.; Kattah, M.; Tenenbaum, J. D.; Butte, A. J.; Utz, P. J. Multiplexed protein array platforms for analysis of autoimmune diseases. Annu.Rev. Immunol. 2006, 24, 391–418.PubMedCrossRefGoogle Scholar
  25. [26]
    Chan, S. M.; Ermann, J.; Su, L.; Fathman, C. G.; Utz, P. J. Protein microarrays for multiplex analysis of signal transduction pathways. Nat. Med. 2004, 10, 1390–1396.PubMedCrossRefGoogle Scholar
  26. [27]
    Deng, Y.; Zhu, X. Y.; Kienlen, T.; Guo, A. Transport at the air/water interface is the reason for rings in protein microarrays. J. Am. Chem. Soc. 2006, 128, 2768–2769.PubMedCrossRefGoogle Scholar
  27. [28]
    Jiang, X. Y.; Xu, Q.; Dertinger, S. K. W.; Stroock, A. D.; Fu, T.; Whitesides, G. M. A general method for patterning gradients of biomolecules on surfaces using microfluidic networks. Anal. Chem. 2005, 77, 2338–2347.PubMedCrossRefGoogle Scholar
  28. [29]
    McDonald, J. C.; Duffy, D. C.; Anderson, J. R.; Chiu, D. T.; Wu, H.; Schueller, O. J.; Whitesides, G. M. Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 2000, 21, 27–40.PubMedCrossRefGoogle Scholar
  29. [30]
    Whitesides, G. M. The origins and the future of microfluidics. Nature 2006, 442, 368–373.PubMedCrossRefADSGoogle Scholar
  30. [31]
    Psaltis, D.; Quake, S. R.; Yang, C. Developing optofluidic technology through the fusion of microfluidics and optics. Nature 2006, 442, 381–386.PubMedCrossRefADSGoogle Scholar
  31. [32]
    Bernard, A.; Michel, B.; Delamarche, E. Micromosaic immunoassays. Anal. Chem. 2001, 73, 8–12.PubMedCrossRefGoogle Scholar
  32. [33]
    Wolf, M.; Juncker, D.; Michel, B.; Hunziker, P.; Delamarche, E. Simultaneous detection of C-reactive protein and other cardiac markers in human plasma using micromosaic immunoassays and self-regulating microfluidic networks. Biosens. Bioelectron. 2004, 19, 1193–1202.PubMedCrossRefGoogle Scholar
  33. [34]
    Gyorvary, E. S.; O’Riordan, A.; Quinn, A. J.; Redmond, G.; Pum, D.; Sleyt, U. B. Biomimetic nanostructure fabrication: Nonlithographic lateral patterning and self-assembly of functional bacterial S-layers at silicon supports. Nano Lett. 2003, 3, 315–319.CrossRefGoogle Scholar
  34. [35]
    Goldman, E. R.; Balighian, E. D.; Mattoussi, H.; Kuno, M. K.; Mauro, J. M.; Tran, P. T.; Anderson, G. P.; Avidin: A natural bridge for quantum dot-antibody conjugates. J. Am. Chem. Soc. 2002, 124, 6378–6382.PubMedCrossRefGoogle Scholar
  35. [36]
    Jaiswal, J. K.; Goldman, E. R.; Simon, S. M. Use of quantum dots for live cell imaging. Nat. Methods 2004, 1, 73–78.PubMedCrossRefGoogle Scholar

Copyright information

© Tsinghua Press and Springer-Verlag GmbH 2008

Authors and Affiliations

  1. 1.Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghaiChina
  2. 2.Laboratory of Advanced Materials (LAM)Fudan UniversityShanghaiChina
  3. 3.National Center for NanoScience and TechnologyBeijingChina

Personalised recommendations