Nano Research

, Volume 1, Issue 6, pp 483–489 | Cite as

Effects of the morphology of the electrode nanostructures on the performance of dye-sensitized solar cells

  • Nicholas N. BwanaEmail author
Open Access
Research Article


This article reports the performances of dye-sensitized solar cells based on different working electrode structures, namely (1) highly ordered arrays of TiO2 nanorods, (2) highly ordered arrays of TiO2 nanotubules of different wall thicknesses, and (3) sintered TiO2 nanoparticles. Even though highest short-circuit current density was achieved with systems based on TiO2 nanotubules, the most efficient cells were those based on ordered arrays of TiO2 nanorods. This is probably due to the higher open-circuit photovoltage values attained with TiO2 nanorods compared with TiO2 nanotubules. The nanorods are thicker than the nanotubules and therefore the injected electrons, stored in the trap states of the inner TiO2 particles, are shielded from recombination with holes in the redox electrolyte at open-circuit. The high short-circuit photocurrent densities seen in the ordered TiO2 systems can be explained by the fact that, in contrast to the sintered nanoparticles, the parallel and vertical orientation of the ordered nanostructures provide well defined electron percolation paths and thus significantly reduce the diffusion distance and time constant.


Electrode nanorods nanotubules sintered efficiency 


  1. [1]
    O’Regan, B.; Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737–740CrossRefGoogle Scholar
  2. [2]
    Grätzel, M. Solar energy conversion by dye-sensitized photovoltaic cells. Inorg. Chem. 2005, 44, 6841–6851PubMedCrossRefGoogle Scholar
  3. [3]
    Mor, G. K.; Shankar, K.; Paulose, M.; Varghese, O. K.; Grimes, C. A. Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett. 2006, 6, 215–218.PubMedCrossRefGoogle Scholar
  4. [4]
    Park, N. G.; Schlichthrol, G.; van de Lagemaat, J.; Cheong, H. M.; Mascarenhas, A.; Frank, A. J. Dyesensitized TiO2 solar cells: Structural and photoelectrochemical characterization of nanocrystalline electrodes formed from hydrolysis of TiCl4. J. Phys. Chem. B 1999, 103, 3308–3314CrossRefGoogle Scholar
  5. [5]
    Grünwald, R.; Trbutsch, H. Mechanisms of instability in Ru-based dye sensitization solar cells. J. Phys. Chem. B 1997, 101, 2564–2575CrossRefGoogle Scholar
  6. [6]
    Kay, A.; Grätzel, M. Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder. Sol. Energy Mater. Sol. Cells 1996, 44, 99–117CrossRefGoogle Scholar
  7. [7]
    Suzuki, K.; Yamaguchi, M.; Kumagai, M.; Yanagida, S. Application of carbon nanotubes to counter electrodes of dye-sensitized solar cells. Chem. Lett. 2003, 32, 28–29CrossRefGoogle Scholar
  8. [8]
    Oskam, G.; Bergeron, B. V.; Meyer, G. J.; Searson, P. C. Pseudohalogens for dye-sensitized TiO2 photoelectrochemical cells. J. Phys. Chem. B 2001, 105, 6867–6873CrossRefGoogle Scholar
  9. [9]
    Nusbaumer, H.; Moser, J. E; Zakeeruddin, S. M.; Nazeeruddin, M. K.; Grätzel, M. CoII(dbbip)22+ complex rivals tri-iodide/iodide redox mediator in dye-sensitized photovoltaic cells. J. Phys. Chem. B 2001, 105, 10461–10464CrossRefGoogle Scholar
  10. [10]
    Ferrere, S.; Gregg, B. A. Photosensitization of TiO2 by [FeII(2,2′-bipyridine-4,4′-dicarboxylic acid)2(CN)2]: Band selective electron injection from ultra-short-lived excited states. J. Am. Chem. Soc. 1998, 120, 843–844CrossRefGoogle Scholar
  11. [11]
    Hou, Y. J.; Xie, P. H.; Zhang, B. W.; Cao, Y.; Xiao, X. R.; Wang, W. B. Influence of the attaching group and substituted position in the photosensitization behavior of ruthenium polypyridyl complexes. Inorg. Chem. 1999, 38, 6320–6322CrossRefGoogle Scholar
  12. [12]
    Kumara, G. R. A.; Kaneko, S.; Okuya, M.; Tennakone, K. Fabrication of dye-sensitized solar cells using triethylamine hydrothiocyanate as a Cul crystal growth inhibitor. Langmuir 2002, 18, 10493–10495CrossRefGoogle Scholar
  13. [13]
    O’Regan, B.; Lenzmann, F.; Muis, R.; Wienke, J. A solidstate dye-sensitized solar cell fabricated with pressuretreated P25-TiO2 and CuSCN: Analysis of pore filling and I V characteristics. Chem. Mater. 2002, 14, 5023–5029CrossRefGoogle Scholar
  14. [14]
    Nazeeruddin, M. K.; Péchy, P.; Renouard, T.; Zakeeruddin, S. M.; Humphrey-Baker, R.; Comte, P.; Liska, P.; Cevey, L.; Costa, E.; Shklover, V.; Spiccia, L.; Deacon, G. B.; Bignozzi, C. A.; Grätzel, M.; Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells. J. Am. Chem. Soc. 2001, 123, 1613–1624PubMedCrossRefGoogle Scholar
  15. [15]
    Hulteen, J. C.; Martin, C. R. A general template-based method for the preparation of nanomaterials. J. Mater. Chem. 1997, 7, 1075–1087CrossRefGoogle Scholar
  16. [16]
    Tenne, R.; Rao, C. N. R. Inorganic nanotubes. Phil. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 2004, 362, 2099–2125CrossRefADSGoogle Scholar
  17. [17]
    Grätzel, M. Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. J. Photochem. Photobiol. A: Chem. 2004, 164, 3–14CrossRefGoogle Scholar
  18. [18]
    Adachi, M.; Murata, Y.; Okada, I.; Yoshikawa, S. Formation of titania nanotubes and applications for dyesensitized solar cells. J. Electrochem. Soc. 2003, 150, G488–G493CrossRefGoogle Scholar
  19. [19]
    de Jong, P. E.; Vanmaekelbergh, D. Investigation of the electronic transport properties of nanocrystalline particulate TiO2 electrodes by intensity-modulated photocurrent spectroscopy. J. Phys. Chem. B 1997, 101, 2716–2722CrossRefGoogle Scholar

Copyright information

© Tsinghua Press and Springer-Verlag GmbH 2008

Authors and Affiliations

  1. 1.Department of Computer Science, Mathematics, and PhysicsThe University of the West IndiesSt. MichaelBarbados

Personalised recommendations