Advertisement

Nano Research

, Volume 1, Issue 6, pp 465–473 | Cite as

On the growth mechanism of nickel and cobalt nanowires and comparison of their magnetic properties

  • T. N. Narayanan
  • M. M. Shaijumon
  • Lijie Ci
  • P. M. AjayanEmail author
  • M. R. AnantharamanEmail author
Open Access
Research Article

Abstract

Magnetic nanowires (NWs) are ideal materials for the fabrication of various multifunctional nanostructures which can be manipulated by an external magnetic field. Highly crystalline and textured nanowires of nickel (Ni NWs) and cobalt (Co NWs) with high aspect ratio (∼330) and high coercivity have been synthesized by electrodeposition using nickel sulphate hexahydrate (NiSO4·6H2O) and cobalt sulphate heptahydrate (CoSO4·7H2O) respectively on nanoporous alumina membranes. They exhibit a preferential growth along 〈110〉. A general mobility assisted growth mechanism for the formation of Ni and Co NWs is proposed. The role of the hydration layer on the resulting one-dimensional geometry in the case of potentiostatic electrodeposition is verified. A very high interwire interaction resulting from magnetostatic dipolar interactions between the nanowires is observed. An unusual low-temperature magnetisation switching for field parallel to the wire axis is evident from the peculiar high field M(T) curve.

Keywords

Magnetic nanowires mobility assisted growth magnetostatic interaction electrodeposition magnetisation switching 

References

  1. [1]
    Puntes, V. F.; Krishnan, K. M.; Alivisatos, A. P. Colloidal nanocrystal shape and size control: The case of cobalt. Science 2001, 291, 2115–2117.PubMedCrossRefADSGoogle Scholar
  2. [2]
    Jung, S. W.; Park, W. I.; Yi, G. C.; Kim, M. Y. Fabrication and controlled magnetic properties of Ni/ZnO nanorod heterostructures. Adv. Mater. 2003, 15, 1358–1361.CrossRefGoogle Scholar
  3. [3]
    Bao, J.; Liang, Y.; Xu, Z.; Si, L. Facile synthesis of hollow nickel submicrometer spheres. Adv. Mater. 2003, 15, 1832–1835.CrossRefGoogle Scholar
  4. [4]
    Sahoo, S.; Petracic, O.; Kleemann, W.; Stappert, S.; Dumpich, G.; Nordblad, P.; Cardoso, S.; Freitas, P. P. Cooperative versus superparamagnetic behavior of dense magnetic nanoparticles in Co80Fe20/Al2O3 multilayers. Appl. Phys. Lett. 2003, 82, 4116–4118.CrossRefADSGoogle Scholar
  5. [5]
    Garcia, J. M.; Asenjo, A.; Velazquez, J.; Garcia, D.; Vazquez, M.; Aranda, P.; Hitzky, E. R. Magnetic behavior of an array of cobalt nanowires. J. Appl. Phys. 1999, 85, 5480–5482.CrossRefADSGoogle Scholar
  6. [6]
    Martin, J. I.; Nogues, J.; Liu, K.; Vicent, J. L.; Schuller, I. K. Ordered magnetic nanostructures: Fabrication and properties. J. Magn. Magn. Mater. 2003, 256, 449–451.CrossRefADSGoogle Scholar
  7. [7]
    Yu, C. Y.; Yu, Y. L.; Sun, H. Y.; Xu, T.; Li, X. H.; Li, W.; Gao, Z. S.; Zhang, X. Y. Enhancement of the coercivity of electrodeposited nickel nanowire arrays. Mater. Lett. 2007, 61, 1859–1862.CrossRefGoogle Scholar
  8. [8]
    Whitney, T. M.; Searson, P. C.; Jiang, J. S.; Chien, C. L. Fabrication and magnetic properties of arrays of metallic nanowires. Science 1993, 261, 1316–1319.PubMedCrossRefADSGoogle Scholar
  9. [9]
    Basu, S.; Chatterjee, S.; Saha, M.; Bandyopadhyay, M.; Mistry, K.; Sengupta, K. Study of electrical characteristics of porous alumina sensors for detection of low moisture in gases. Sens. Actuat. B-Chem. 2001, 79, 182–185.CrossRefGoogle Scholar
  10. [10]
    Meng, G.; Cao, A.; Cheng, J. Y.; Vijayaraghavan, A.; Jung, Y. J.; Shima, M.; Ajayan, P. M. Ordered Ni nanowire tip arrays sticking out of the anodic aluminum oxide template. J. Appl. Phys. 2005, 97, 064303.Google Scholar
  11. [11]
    Lew, K. K.; Redwing, J. Growth characteristics of silicon nanowires synthesized by vapor-liquid-solid growth in nanoporous alumina templates. J. Cryst. Growth 2003, 254, 14–17.Google Scholar
  12. [12]
    Wang, Y. C.; Leu, I. C.; Hon, M. H. Preparation and characterization of nanosized ZnO arrays by electrophoretic deposition. J. Cryst. Growth 2002, 237, 564–567.CrossRefADSGoogle Scholar
  13. [13]
    Athanssiou, E. K.; Grossmann, P.; Grass, R. N.; Stark, W. J. Template free, large scale synthesis of cobalt nanowires using magnetic fields for alignment. Nanotechnology 2007, 18, 165606.Google Scholar
  14. [14]
    Fert, A.; Piraux, L. Magnetic nanowires. J. Magn. Magn. Mater. 1999, 200, 338–358.CrossRefADSGoogle Scholar
  15. [15]
    Fasol, G. Nanowires: Small is beautiful. Science 1998, 280, 545–546.CrossRefADSGoogle Scholar
  16. [16]
    Martin, C. R. Nanomaterials: A membrane-based synthetic approach. Science 1994, 266, 1961–1966.PubMedCrossRefADSGoogle Scholar
  17. [17]
    Kodama, R. H.; Berkwitz, A. E.; Meniff, E. J.; Foner, S. Surface spin disorder in NiFe2O4 nanoparticles. Phys. Rev. Lett. 1996, 77, 394–397.PubMedCrossRefADSGoogle Scholar
  18. [18]
    Goya, G. F.; Forseca, F. C.; Jardin, R. F.; Muceillo, R.; Carreno, N. L. V.; Longo, E.; Leite, E. R. Magnetic dynamics of single-domain Ni nanoparticles. J. Appl. Phys. 2003, 93, 6531–6533.CrossRefADSGoogle Scholar
  19. [19]
    Kafil, M. R.; Saibal, R. Thermal diffusivity of nonfractal and fractal nickel nanowires. J. Appl. Phys. 2008, 103, 084302.Google Scholar
  20. [20]
    Escrig, J.; Lavin, R.; Palma, J. L.; Denardin, J. C.; Altbir, D.; Cortes, A.; Gomez, H. Geometry dependence of coercivity in Ni nanowire arrays. Nanotechnology 2008, 19, 075713.Google Scholar
  21. [21]
    Rivas, J.; Kazadi Mukenga Bantu, A.; Zaragoza, G.; Blanco, M. C.; Lopez-Quintela, M. A. Preparation and magnetic behavior of arrays of electrodeposited Co nanowires. J. Magn. Magn. Mater. 2002, 249, 220–225.CrossRefADSGoogle Scholar
  22. [22]
    Gubbiotti, G.; Tacchi, S.; Carlotti, G.; Vavassori, P.; Singh, N.; Goolaup, S.; Adeyeye, A. O.; Stashkevich, A.; Kostylev, M. Magnetostatic interaction in arrays of nanometric permalloy wires: A magneto-optic Kerr effect and a Brillouin light scattering study. Phys. Rev. B 2005, 72, 224413.Google Scholar
  23. [23]
    Goolaup, S.; Adeyeye, A. O.; Singh, N. Dipolar coupling in closely packed pseudo-spin-valve nanowire arrays. J. Appl. Phys. 2006, 100, 114301.CrossRefADSGoogle Scholar
  24. [24]
    Ou, F. S.; Shaijumon, M. M.; Ajayan, P. M. Controlled manipulation of giant hybrid in-organic assemblies. Nano Lett. 2008, 8, 1853–1857.PubMedCrossRefADSGoogle Scholar
  25. [25]
    Narayanan, T. N.; Shaijumon, M. M.; Ajayan, P. M.; Anantharaman, M. R. Synthesis of high coercivity cobalt nanotubes with acetate precursors and elucidation of the mechanism of growth. J. Phys. Chem. C 2008, 112, 14281–14285.CrossRefGoogle Scholar
  26. [26]
    Bantu, A. K. M.; Rivas, J.; Zaragoza, G.; Quintela, M. A. L.; Blanco, M. C. Structure and magnetic properties of electrodeposited cobalt nanowires. J. Appl. Phys. 2001, 89, 3393–3397.CrossRefADSGoogle Scholar
  27. [27]
    Cao, H.; Wang, L; Qiu, Y.; Wu, Q.; Wang, G.; Zhang, L.; Liu, X. Generation and growth mechanism of metal (Fe, Co, Ni) nanotube arrays. ChemPhysChem 2006, 7, 1500–1504.PubMedCrossRefGoogle Scholar
  28. [28]
    Cao, H.; Tie, C.; Xu, Z.; Hong, J.; Sang, H. Array of nickel nanowires enveloped in polyaniline nanotubules and its magnetic behavior. Appl. Phys. Lett. 2001, 78, 1592–1594.CrossRefADSGoogle Scholar
  29. [29]
    Bao, J.; Tie, C.; Xu, Z.; Zhou, Q.; Shen, D.; Ma, Q. Template synthesis of an array of nickel nanotubules and its magnetic behavior. Adv. Mater. 2001, 13, 1631–1633.CrossRefGoogle Scholar
  30. [30]
    Chikazumi, S. Physics of Magnetism; John Wiley & Sons: New York, 1964.Google Scholar
  31. [31]
    Sun, L.; Hao, Y.; Chein, C. L.; Searson, P. C. Tuning the properties of magnetic nanowires. IBM J. Res. Dev. 2005, 49, 79–102.CrossRefGoogle Scholar
  32. [32]
    Sellmyer, D. J.; Zheng, M.; Skomski, R. Magnetism of Fe, Co and Ni nanowires in self-assembled arrays. J. Phys.: Condens. Mat. 2001, 13, R433–R460.CrossRefADSGoogle Scholar
  33. [33]
    Heydon, G. P.; Hoon, S. R.; Farley, A. N.; Tomlinson, S. L.; Valera, M. S.; Attenborough, K.; Schwarzacher, W. Magnetic properties of electrodeposited nanowires. J. Phys. D: Appl. Phys. 1997, 30, 1083–1093.CrossRefADSGoogle Scholar
  34. [34]
    Henry, Y.; Ounadjela, K.; Piraux, L.; Dubois, S.; George, J. M.; Duvail, J. L. Magnetic anisotropy and domain patterns in electrodeposited cobalt nanowires. Eur. Phys. J. B 2001, 20, 35–54.CrossRefADSGoogle Scholar
  35. [35]
    Ounadjela, K.; Ferre, R.; Louail, L.; George, J. M.; Maurice, J. L.; Pirax, L.; Dubuis, S. Magnetization reversal in cobalt and nickel electrodeposited nanowires. J. Appl. Phys. 1997, 81, 5455–5457.CrossRefADSGoogle Scholar

Copyright information

© Tsinghua Press and Springer-Verlag GmbH 2008

Authors and Affiliations

  1. 1.Department of PhysicsCochin University of Science & TechnologyKeralaIndia
  2. 2.Department of Mechanical Engineering & Materials ScienceRice UniversityHoustonUSA

Personalised recommendations