Nano Research

, Volume 1, Issue 6, pp 457–464 | Cite as

InAs/InP/ZnSe core/shell/shell quantum dots as near-infrared emitters: Bright, narrow-band, non-cadmium containing, and biocompatible

  • Renguo Xie
  • Kai Chen
  • Xiaoyuan Chen
  • Xiaogang PengEmail author
Open Access
Research Article


High quality InAs/InP/ZnSe core/shell/shell quantum dots have been grown by a one-pot approach. This engineered quantum dots with unique near-infrared (NIR) fluorescence, possessing outstanding optical properties, and the biocompatibility desired for in vivo applications. The resulting quantum dots have significantly lower intrinsic toxicity compared to NIR emissive dots containing elements such as cadmium, mercury, or lead. Also, these newly developed ultrasmall non-Cd containing and NIR-emitting quantum dots showed significantly improved circulation half-life and minimal reticuloendothelial system (RES) uptake.


Quantum dots InAs near-infrared (NIR) toxicity 


  1. [1]
    Bruchez, M., Jr.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Semiconductor nanocrystals as fluorescent biological labels. Science 1998, 281, 2013–2016.PubMedCrossRefADSGoogle Scholar
  2. [2]
    Chan, W. C. W.; Nie, S. M. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998, 281, 2016–2018.PubMedCrossRefADSGoogle Scholar
  3. [3]
    Dubertret, B.; Skourides, P.; Norris, D. J.; Noireaux, V; Brivanlou, A. H.; Libchaber, A. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 2002, 298, 1759–1762.PubMedCrossRefADSGoogle Scholar
  4. [4]
    Larson, D. R.; Zipfel, W. R.; Williams, R. M.; Clark, S. W.; Bruchez, M. P.; Wise, F. W.; Webb, W. W. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 2003, 300, 1434–1436.PubMedCrossRefADSGoogle Scholar
  5. [5]
    Kim, S.; Lim, Y. T.; Soltesz, E. G.; De Grand, A. M.; Lee, J.; Nakayama, A.; Parker, J. A.; Mihaljevic, T.; Laurence, R. G.; Dor, D. M.; Cohn, L. H.; Bawendi, M. G.; Frangioni, J. V. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat. Biotechnol. 2004, 22, 93–97.PubMedCrossRefGoogle Scholar
  6. [6]
    Gao, X. H.; Cui, Y. Y.; Levenson, R. M.; Chung, L. W. K.; Nie, S. M. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 2004, 22, 969–976.PubMedCrossRefGoogle Scholar
  7. [7]
    Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundarensan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005, 307, 538–544.PubMedCrossRefADSGoogle Scholar
  8. [8]
    Zimmer, J. P.; Kim, S. W.; Ohnishi, S.; Tanaka, E.; Frangioni, J. V.; Bawendi, M. G. Size series of small indium arsenide-zinc selenide core-shell nanocrystals and their application to in vivo imaging. J. Am. Chem. Soc. 2006, 128, 2526–2527.PubMedCrossRefGoogle Scholar
  9. [9]
    Guzelian, A. A.; Banin, U.; Kadavanich, A. V.; Peng, X.; Alivisatos, A. P. Colloidal chemical synthesis and characterization of InAs nanocrystal quantum dots. Appl. Phys. Lett. 1996, 69, 1432–1434.CrossRefADSGoogle Scholar
  10. [10]
    Cao, Y. W.; Banin, U. Synthesis and characterization of InAs/InP and InAs/CdSe core/shell nanocrystals. Angew. Chem. Int. Ed. 1999, 38, 3692–3694.CrossRefGoogle Scholar
  11. [11]
    Qu, L.H.; Peng, X. G. Control of photoluminescence properties of CdSe nanocrystals in growth. J. Am. Chem. Soc. 2002, 124, 2049–2055.PubMedCrossRefGoogle Scholar
  12. [12]
    Talapin, D. V.; Rogach, A. L.; Shevchenko, E. V.; Kornowski, A.; Haase, M.; Weller, H. Dynamic distribution of growth rates within the ensembles of colloidal II VI and III V semiconductor nanocrystals as a factor governing their photoluminescence efficiency. J. Am. Chem. Soc. 2002, 124, 5782–5790.PubMedCrossRefGoogle Scholar
  13. [13]
    Battaglia, D.; Peng. X. G. Formation of high quality InP and InAs nanocrystals in a noncoordinating solvent. Nano Lett. 2002, 2, 1027–1030.CrossRefGoogle Scholar
  14. [14]
    Yu, P. R.; Beard, M. C.; Ellingson, R. J.; Ferrere, S.; Curtis, C.; Drexler, J.; Luiszer, F.; Nozik, A. J. Absorption cross-section and related optical properties of colloidal InAs quantum dots. J. Phys. Chem. B 2005, 109, 7084–7087.PubMedCrossRefGoogle Scholar
  15. [15]
    Aharoni, A.; Mokari, T.; Popov, I.; Banin, U. Synthesis of InAs /CdSe/ ZnSe core / shell / shell structures with bright and stable near-infrared fluorescence. J. Am. Chem. Soc. 2006, 128, 257–264.PubMedCrossRefGoogle Scholar
  16. [16]
    Cai, W. B.; Shin, D. W.; Chen, K.; Gheysens, O.; Cao, Q. Z.; Wang, S. X.; Gambhir, S. S.; Chen, X, Y. Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett. 2006, 6, 669–676.PubMedCrossRefGoogle Scholar
  17. [17]
    Xie, R.G.; Peng, X. G. Synthetic scheme for high-quality InAs nanocrystals based on self-focusing and one-pot synthesis of InAs-based core-shell nanocrystals. Angew. Chem. Int. Ed. 2008, 47, 7677–7680.CrossRefGoogle Scholar
  18. [18]
    Li, J. J.; Wang, A.; Guo, W. Z.; Keay, J. C.; Mishima, T. D.; Johnson, M. B.; Peng, X. G. Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction. J. Am. Chem. Soc. 2003, 125, 12567–12575.PubMedCrossRefGoogle Scholar
  19. [19]
    Schipper, M. L.; Cheng, Z.; Lee, S. W.; Bentolila, L. A.; Iyer, G.; Rao, J, H.; Chen, X. Y.; Wu, A. M.; Weiss, S.; Gambhir, S. S. Micro PET-based biodistribution of quantum dots in living mice. J. Nucl. Med. 2007, 48, 1511–1518.PubMedCrossRefGoogle Scholar
  20. [20]
    Sun, X. M.; Liu, Z.; Welsher, K.; Robinson, J. T.; Goodwin, A.; Zaric, S.; Dai, H. J. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 2008, 1, 203–212.CrossRefGoogle Scholar

Copyright information

© Tsinghua Press and Springer-Verlag GmbH 2008

Authors and Affiliations

  • Renguo Xie
    • 1
  • Kai Chen
    • 2
  • Xiaoyuan Chen
    • 2
  • Xiaogang Peng
    • 1
    Email author
  1. 1.Department of Chemistry and BiochemistryUniversity of ArkansasFayettevilleUSA
  2. 2.Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X ProgramStanford University School of MedicineStanfordUSA

Personalised recommendations