Nano Research

, Volume 1, Issue 6, pp 450–456 | Cite as

Two-photon luminescence imaging of Bacillus spores using peptide-functionalized gold nanorods

  • Wei He
  • Walter A. Henne
  • Qingshan Wei
  • Yan Zhao
  • Derek D. Doorneweerd
  • Ji-Xin Cheng
  • Philip S. Low
  • Alexander WeiEmail author
Open Access
Research Article


Bacillus subtilis spores (a simulant of Bacillus anthracis) have been imaged by two-photon luminescence (TPL) microscopy, using gold nanorods (GNRs) functionalized with a cysteine-terminated homing peptide. Control experiments using a peptide with a scrambled amino acid sequence confirmed that the GNR targeting was highly selective for the spore surfaces. The high sensitivity of TPL combined with the high affinity of the peptide labels enables spores to be detected with high fidelity using GNRs at femtomolar concentrations. It was also determined that GNRs are capable of significant TPL output even when irradiated at near infrared (NIR) wavelengths far from their longitudinal plasmon resonance (LPR), permitting considerable flexibility in the choice of GNR aspect ratio or excitation wavelength for TPL imaging.


Bionanotechnology nanorods nonlinear optics pathogen detection peptides 


  1. [1]
    Brown, E. B.; Campbell, R. B.; Tsuzuki, Y.; Xu, L.; Carmeliet, P.; Fukumura, D.; Jain, R. K. In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy. Nat. Med. 2001, 7, 864–868.PubMedCrossRefGoogle Scholar
  2. [2]
    Helmchen, F.; Denk, W. Deep tissue two-photon microscopy. Nat. Methods 2005, 2, 932–940.PubMedCrossRefGoogle Scholar
  3. [3]
    Yelin, D.; Oron, D.; Thiberge, S.; Moses, E.; Silberberg, Y. Multiphoton plasmon-resonance microscopy. Opt. Express 2003, 11, 1385–1391.ADSPubMedCrossRefGoogle Scholar
  4. [4]
    Zhu, L.; Loo, W. T. Y.; Chow, L. W. C. Circulating tumor cells in patients with breast cancer: Possible predictor of micro-metastasis in bone marrow but not in sentinel lymph nodes. Biomed. Pharmacother. 2005, 59, S355–S358.PubMedCrossRefGoogle Scholar
  5. [5]
    Bouhelier, A.; Bachelot, R.; Lerondel, G.; Kostcheev, S.; Royer, P.; Wiederrecht, G. P. Surface plasmon characteristics of tunable photoluminescence in single gold nanorods. Phys. Rev. Lett. 2005, 95, 267405.PubMedCrossRefADSGoogle Scholar
  6. [6]
    Imura, K.; Nagahara, T.; Okamoto, H. Plasmon mode imaging of single gold nanorods. J. Am. Chem. Soc. 2004, 126, 12730–12731.PubMedCrossRefGoogle Scholar
  7. [7]
    Imura, K.; Nagahara, T.; Okamoto, H. Near-field two-photon-induced photoluminescence from single gold nanorods and imaging of plasmon modes. J. Phys. Chem. B 2005, 109, 13214–13220.PubMedCrossRefGoogle Scholar
  8. [8]
    Wang, H.; Huff, T. B.; Zweifel, D. A.; He, W.; Low, P. S.; Wei, A.; Cheng, J. -X. In vitro and in vivo two-photon luminescence imaging of single gold nanorods. P. Natl. Acad. Sci. U.S.A. 2005, 102, 15752–15756.CrossRefADSGoogle Scholar
  9. [9]
    Durr, N. J.; Larson, T.; Smith, D. K.; Korgel, B. A.; Sokolov, K.; Ben-Yakar, A. Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods. Nano Lett. 2007, 7, 941–945.PubMedCrossRefADSGoogle Scholar
  10. [10]
    Huff, T. B.; Hansen, M. N.; Zhao, Y.; Cheng, J. -X.; Wei, A. Controlling the cellular uptake of gold nanorods. Langmuir 2007, 23, 1596–1599.PubMedCrossRefGoogle Scholar
  11. [11]
    Huff, T. B.; Tong, L.; Zhao, Y.; Hansen, M. N.; Cheng, J. -X.; Wei, A. Hyperthermic effects of gold nanorods on tumor cells. Nanomedicine 2007, 2, 125–132.PubMedCrossRefGoogle Scholar
  12. [12]
    Tong, L.; Zhao, Y.; Huff, T. B.; Hansen, M. N.; Wei, A.; Cheng, J. -X. Gold nanorods mediate tumor cell death by compromising membrane integrity. Adv. Mater. 2007, 19, 3136–3141.CrossRefPubMedGoogle Scholar
  13. [13]
    Jain, P. K.; Lee, K. S.; El-Sayed, I. H.; El-Sayed, M. A. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine. J. Phys. Chem. B 2006, 110, 7238–7248.PubMedCrossRefGoogle Scholar
  14. [14]
    Nikoobakht, B.; El-Sayed, M. A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 2003, 15, 1957–1962.CrossRefGoogle Scholar
  15. [15]
    Sau, T. K.; Murphy, C. J. Seeded high yield synthesis of short Au nanorods in aqueous solution. Langmuir 2004, 20, 6414–6420.PubMedCrossRefGoogle Scholar
  16. [16]
    Zweifel, D. A.; Wei, A. Sulfide-arrested growth of gold nanorods. Chem. Mater. 2005, 17, 4256–4261.PubMedCrossRefGoogle Scholar
  17. [17]
    Liao, H.; Hafner, J. H. Gold nanorod bioconjugates. Chem. Mater. 2005, 17, 4636–4641.CrossRefGoogle Scholar
  18. [18]
    Oyelere, A. K.; Chen, P. C.; Huang, X.; El-Sayed, I. H.; El-Sayed, M. A. Peptide-conjugated gold nanorods for nuclear targeting. Bioconjug. Chem. 2007, 18, 1490–1497.PubMedCrossRefGoogle Scholar
  19. [19]
    Zhao, Y.; Pérez-Segarra, W.; Shi, Q.; Wei, A. Dithiocarbamate assembly on gold. J. Am. Chem. Soc. 2005, 127, 7328–7329.PubMedCrossRefGoogle Scholar
  20. [20]
    Turnbough, C. L., Jr. Discovery of phage display peptide ligands for species-specific detection of Bacillus spores. J. Microbiol. Meth. 2003, 53, 263–271.CrossRefGoogle Scholar
  21. [21]
    Stachowiak, J. C.; Shugard, E. E.; Mosier, B. P.; Renzi, R. F.; Caton, P. F.; Ferko, S. M.; Van de Vreugde, J. L.; Yee, D. D.; Haroldsen, B. L.; Vandernoot, V. A. Autonomous microfluidic sample preparation system for protein profile-based detection of aerosolized bacterial cells and spores. Anal. Chem. 2007, 79, 5763–5770.PubMedCrossRefGoogle Scholar
  22. [22]
    Dhayal, B.; Henne, W. A.; Doorneweerd, D. D.; Reifenberger, R. G.; Low, P. S. Detection of Bacillus subtilis spores using peptide-functionalized cantilever arrays. J. Am. Chem. Soc. 2006, 128, 3716–3721.PubMedCrossRefGoogle Scholar
  23. [23]
    Clark Burton, N.; Adhikari, A.; Grinshpun, S. A.; Hornung, R.; Reponen, T. The effect of filter material on bioaerosol collection of Bacillus subtilis spores used as a Bacillus anthracis simulant. J. Environ. Monitor. 2005, 7, 475–480.CrossRefGoogle Scholar
  24. [24]
    Logan, N. A.; Carman, J. A. Identification of Bacillus anthracis by API tests. J. Med. Microbiol. 1985, 20, 75–85.PubMedCrossRefGoogle Scholar
  25. [25]
    Fasanella, A.; Losito, S. PCR assay to detect Bacillus anthracis spores in heat-treated specimens. J. Clin. Microbiol. 2003, 41, 896–899.PubMedCrossRefGoogle Scholar
  26. [26]
    Farrell, S.; Halsall, H. B. Immunoassay for B. globigii spores as a model for detecting B. anthracis spores in finished water. Analyst 2005, 130, 489–497.PubMedCrossRefADSGoogle Scholar
  27. [27]
    Bashir, R. BioMEMS: State-of-art in detection, opportunities and prospects. Adv. Drug Deliv. Rev. 2004, 56, 1565–1586.PubMedCrossRefGoogle Scholar
  28. [28]
    Knurr, J.; Benedek, O. Peptide ligands that bind selectively to spores of Bacillus subtilis and closely related species. Appl. Environ. Microbiol. 2003, 69, 6841–6847.PubMedCrossRefGoogle Scholar
  29. [29]
    Burda, C.; Chen, X.; Narayanan, R.; El-Sayed, M. A. Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 2005, 105, 1025–1102.PubMedCrossRefGoogle Scholar
  30. [30]
    Yu, C.; Irudayaraj, J. Multiplex biosensor using gold nanorods. Anal. Chem. 2007, 79, 572–579.PubMedCrossRefGoogle Scholar
  31. [31]
    Ding, H.; Yong, K. -T.; Roy, I.; Pudavar, H. E.; Law, W. C.; Bergey, E. J.; Prasad, P. N. Gold nanorods coated with multilayer polyelectrolyte as contrast agents for multimodal imaging. J. Phys. Chem. C 2007, 111, 12552–12557.CrossRefGoogle Scholar
  32. [32]
    Gole, A.; Murphy, C. J. Polyelectrolyte-coated gold nanorods: Synthesis, characterization and immobilization. Chem. Mater. 2005, 17, 1325–1330.CrossRefGoogle Scholar
  33. [33]
    Gole, A.; Murphy, C. J. Azide-derivatized gold nanorods: Functional materials for “click” chemistry. Langmuir 2008, 24, 266–272.PubMedCrossRefGoogle Scholar
  34. [34]
    Kim, K.; Huang, S. -W.; Ashkenazi, S.; O’Donnell, M.; Agarwal, A.; Kotov, N. A.; Denny, M. F.; Kaplan, M. J. Photoacoustic imaging of early inflammatory response using gold nanorods. Appl. Phys. Lett. 2007, 90, 223901.CrossRefADSGoogle Scholar
  35. [35]
    Takahashi, H.; Niidome, Y.; Niidome, T.; Kaneko, K.; Kawasaki, H.; Yamada, H. Modification of gold nanorods using phosphatidylcholine to reduce cytotoxicity. Langmuir 2006, 22, 2–5.PubMedCrossRefGoogle Scholar
  36. [36]
    Leonov, A. P.; Zheng, J.; Clogston, J. D.; Stern, S. T.; Patri, A. K.; Wei, A. Detoxification of gold nanorods by treatment with polystyrenesulfonate. ACS Nano, in press.Google Scholar
  37. [37]
    Grabar, K. C.; Allison, K. J.; Baker, B. E.; Bright, R. M.; Brown, K. R.; Freeman, R. G.; Fox, A. P.; Keating, C. D.; Musick, M. D.; Natan, M. J. Two-dimensional arrays of colloidal gold particles: A flexible approach to macroscopic metal surfaces. Langmuir 1996, 12, 2353–2361.CrossRefGoogle Scholar
  38. [38]
    Antony, A. C.; Low, P. S. Folate receptor-targeted drugs for cancer and inflammatory diseases. Adv. Drug Deliv. Rev. 2004, 56, 1055–1058.PubMedCrossRefGoogle Scholar
  39. [39]
    Leamon, C. P.; Low, P. S. Delivery of macromolecules into living cells: A method that exploits folate receptor endocytosis. P. Natl. Acad. Sci. U.S.A. 1991, 88, 5572–5526.CrossRefADSGoogle Scholar
  40. [40]
    Pissuwan, D.; Valenzuela, S. M.; Miller, C. M.; Cortie, M. B. A golden bullet? Selective targeting of Toxoplasma gondii tachyzoites using antibody-functionalized gold nanorods. Nano Lett. 2007, 7, 3808–3812.PubMedCrossRefADSGoogle Scholar
  41. [41]
    Norman, R. S.; Stone, J. W.; Gole, A.; Murphy, C. J.; Sabo-Attwood, T. L. Targeted photothermal lysis of the pathogenic bacteria, Pseudomonas aeruginosa, with gold nanorods. Nano Lett. 2008, 8, 302–306.PubMedCrossRefADSGoogle Scholar

Copyright information

© Tsinghua Press and Springer-Verlag GmbH 2008

Authors and Affiliations

  • Wei He
    • 1
  • Walter A. Henne
    • 1
    • 3
  • Qingshan Wei
    • 1
  • Yan Zhao
    • 1
  • Derek D. Doorneweerd
    • 1
    • 3
  • Ji-Xin Cheng
    • 1
    • 2
  • Philip S. Low
    • 1
    • 3
  • Alexander Wei
    • 1
    • 3
    Email author
  1. 1.Department of ChemistryPurdue UniversityWest LafayetteUSA
  2. 2.Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteUSA
  3. 3.Center of Sensing Science and TechnologyPurdue UniversityWest LafayetteUSA

Personalised recommendations