Advertisement

Nano Research

, Volume 1, Issue 6, pp 441–449 | Cite as

Synthesis and optical properties of cubic gold nanoframes

  • Leslie Au
  • Yeechi Chen
  • Fei Zhou
  • Pedro H. C. Camargo
  • Byungkwon Lim
  • Zhi-Yuan Li
  • David S. Ginger
  • Younan XiaEmail author
Open Access
Research Article

Abstract

This paper describes a facile method of preparing cubic Au nanoframes with open structures via the galvanic replacement reaction between Ag nanocubes and AuCl2 . A mechanistic study of the reaction revealed that the formation of Au nanoframes relies on the diffusion of both Au and Ag atoms. The effect of the edge length and ridge thickness of the nanoframes on the localized surface plasmon resonance peak was explored by a combination of discrete dipole approximation calculations and single nanoparticle spectroscopy. With their hollow and open structures, the Au nanoframes represent a novel class of substrates for applications including surface plasmonics and surface-enhanced Raman scattering.

Keywords

Gold nanostructures galvanic replacement hollow nanostructures localized surface plasmon resonance surface-enhanced Raman scattering 

References

  1. [1]
    Kim, S. W.; Kim, M.; Lee, W. Y.; Hyeon, T. Fabrication of hollow palladium spheres and their successful application to the recyclable heterogeneous catalyst for Suzuki coupling reactions. J. Am. Chem. Soc. 2002, 124, 7642–7643.PubMedCrossRefGoogle Scholar
  2. [2]
    Sun, Y.; Xia, Y. Increased sensitivity of surface plasmon resonance of gold nanoshells compared to that of gold solid colloids in response to environmental changes. Anal. Chem. 2002, 74, 5297–5305.PubMedCrossRefGoogle Scholar
  3. [3]
    Portney, N. G.; Ozkan, M. Nano-oncology: Drug delivery, imaging, and sensing. Anal. Bioanal. Chem. 2006, 384, 620–630.PubMedCrossRefGoogle Scholar
  4. [4]
    Chen, J.; Saeki, F.; Wiley, B. J.; Cang, H.; Cobb, M. J.; Li, Z. -Y.; Au, L.; Zhang, H.; Kimmey, M. B.; Li, X.; Xia, Y. Gold nanocages: Bioconjugation and their potential use as optical imaging contrast agents. Nano Lett. 2005, 5, 473–477.PubMedCrossRefGoogle Scholar
  5. [5]
    Chen, J.; Wiley, B. J.; Li, Z. -Y.; Campbell, D.; Saeki, F.; Cang, H.; Au, L.; Lee, J.; Li, X.; Xia, Y. Gold nanocages: Engineering their structure for biomedical applications. Adv. Mater. 2005, 17, 2255–2261.CrossRefGoogle Scholar
  6. [6]
    Cang, H.; Sun, T.; Li, Z. -Y.; Chen, J.; Wiley, B. J.; Xia, Y.; Li, X. Gold nanocages as contrast agents for spectroscopic and conventional optical coherence tomography. Opt. Lett. 2005, 30, 3048–3050.PubMedCrossRefADSGoogle Scholar
  7. [7]
    Loo, C.; Lin, A.; Hirsch, L.; Lee, M. H.; Barton, J.; Halas, N.; West, J.; Drezek, R. Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol. Cancer Res. Treat. 2004, 3, 33–40.PubMedGoogle Scholar
  8. [8]
    Chen, J.; Wang, D.; Xi, J.; Au, L.; Siekkinen, A.; Warsen, A.; Li, Z. -Y.; Zhang, H.; Xia, Y.; Li, X. Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells. Nano Lett. 2007, 7, 1318–1322.PubMedCrossRefGoogle Scholar
  9. [9]
    Hirsch, L. R.; Gobin, A. M.; Lowery, A. R.; Tam, F.; Drezek, R. A.; Halas, N. J.; West, J. L. Metal nanoshells. Ann. Biomed. Eng. 2006, 34, 15–22.PubMedCrossRefGoogle Scholar
  10. [10]
    Au, L.; Zheng, D.; Zhou, F.; Li, Z. -Y.; Li, X.; Xia, Y. A quantitative study on the photothermal effect of immuno gold nanocages targeted to breast cancer cells. ACS Nano 2008, 2, 1645–1652.Google Scholar
  11. [11]
    Sun, Y.; Xia, Y. Shape-controlled synthesis of gold and silver nanoparticles. Science 2002, 298, 2176–2179.PubMedCrossRefADSGoogle Scholar
  12. [12]
    Sun, Y.; Mayers, B.; Xia, Y. Metal nanostructures with hollow interiors. Adv. Mater. 2003, 15, 641–646.CrossRefGoogle Scholar
  13. [13]
    Wiley, B. J.; Sun, Y.; Chen, J.; Cang, H.; Li, Z. -Y.; Li, X.; Xia, Y. Shape-controlled synthesis of silver and gold nanostructures. MRS Bull. 2005, 30, 356–361.Google Scholar
  14. [14]
    Yang, J.; Lee, J. Y.; Too, H. P. Core-shell Ag-Au nanoparticles from replacement reaction in organic medium. J. Phys. Chem. B 2005, 109, 19208–19212.PubMedCrossRefGoogle Scholar
  15. [15]
    Chen, J.; McLellan, J. M.; Siekkinen, A.; Xiong, Y.; Li, Z. -Y.; Xia, Y. Facile synthesis of gold-silver nanocages with controllable pores on the surface. J. Am. Chem. Soc. 2006, 128, 14776–14777.PubMedCrossRefGoogle Scholar
  16. [16]
    Yin, Y.; Erdonmez, C.; Aloni, S.; Alivisatos, A. P. Faceting of nanocrystals during chemical transformation: From solid silver spheres to hollow gold octahedra. J. Am. Chem. Soc. 2006, 128, 12671–12673.PubMedCrossRefGoogle Scholar
  17. [17]
    Sun, Y.; Xia, Y. Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium. J. Am. Chem. Soc. 2004, 126, 3892–3901.PubMedCrossRefGoogle Scholar
  18. [18]
    Chen, J.; Wiley, B. J.; McLellan, J.; Xiong, Y.; Li, Z. -Y.; Xia, Y. Optical properties of Pd Ag and Pt Ag nanoboxes synthesized via galvanic replacement reactions. Nano Lett. 2005, 5, 2058–2062.PubMedCrossRefGoogle Scholar
  19. [19]
    Lu, X.; Au, L.; McLellan, J.; Li, Z. -Y.; Marquez, M.; Xia, Y. Fabrication of cubic nanocages and nanoframes by dealloying Au/Ag alloy nanoboxes with an aqueous etchant based on Fe(NO3)3 or NH4OH. Nano Lett. 2007, 7, 1764–1767.PubMedCrossRefGoogle Scholar
  20. [20]
    Au, L.; Lu, X.; Xia, Y. A comparative study of galvanic replacement reactions involving Ag nanocubes and AuCl2 or AuCl4 . Adv. Mater. 2008, 20, 2517–2522.CrossRefGoogle Scholar
  21. [21]
    Xiong, Y.; Wiley, B. J.; Chen, J.; Li, Z. -Y.; Yin, Y.; Xia, Y. Corrosion-based synthesis of single-crystal Pd nanoboxes and nanocages and their surface plasmon properties. Angew. Chem. Int. Ed. 2005, 44, 7913–7917.CrossRefGoogle Scholar
  22. [22]
    Kim, D.; Park, J.; An, K.; Yang, N. -K.; Park, J.-G.; Hyeon, T. Synthesis of hollow iron nanoframes. J. Am. Chem. Soc. 2007, 129, 5812–5813.PubMedCrossRefGoogle Scholar
  23. [23]
    Siekkinen, A. R.; McLellan, J. M.; Chen, J.; Xia, Y. Rapid synthesis of small silver nanocubes by mediating polyol reduction with a trace amount of sodium sulfide or sodium hydrosulfide. Chem. Phys. Lett. 2006, 432, 491–496.PubMedCrossRefADSGoogle Scholar
  24. [24]
    Skrabalak, S. E.; Au, L.; Li, X.; Xia, Y. Facile synthesis of Ag nanocubes and Au nanocages. Nat. Protoc. 2007, 2, 2182–2190.PubMedCrossRefGoogle Scholar
  25. [25]
    Sieradzki, K. Curvature effects in alloy dissolution. J. Electrochem. Soc. 1993, 140, 2868–2872.CrossRefGoogle Scholar
  26. [26]
    Roosen, A. R.; Carter, W. C. Simulations of microstructural evolution: Anisotropic growth and coarsening. Physica A 1998, 261, 232–247.CrossRefGoogle Scholar
  27. [27]
    Wang, Z. L. Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. J. Phys. Chem. B 2000, 104, 1153–1175.CrossRefGoogle Scholar
  28. [28]
    Wiley, B. J.; Sun, Y.; Mayers, B.; Xia, Y. Shape-controlled synthesis of metal nanostructures: The case of silver. Chem. Eur. J. 2005, 11, 454–463.CrossRefGoogle Scholar
  29. [29]
    Tao, A.; Sinsermsuksakul, P.; Yang, P. Polyhedral silver nanocrystals with distinct scattering signatures. Angew. Chem. Int. Ed. 2006, 45, 4597–4601.CrossRefGoogle Scholar
  30. [30]
    Seo, D.; Yoo, C. I.; Park, J. C.; Park, S. M.; Ryu, S.; Song, H. Directed surface overgrowth and morphology control of polyhedral gold nanocrystals. Angew. Chem. Int. Ed. 2008, 47, 763–767.CrossRefGoogle Scholar
  31. [31]
    Dick, K.; Dhanasekaran, T.; Zhang, Z.; Meisel, D. Size-dependent melting of silica-encapsulated gold nanoparticles. J. Am. Chem. Soc. 2002, 124, 2312–2317.PubMedCrossRefGoogle Scholar
  32. [32]
    Shi, H.; Zhang, L.; Cai, W. Composition modulation of optical absorption in AgxAu1−x alloy nanocrystals in situ formed within pores of mesoporous silica. J. Appl. Phys. 2000, 87, 1572–1574.CrossRefADSGoogle Scholar
  33. [33]
    McLellan, J. M.; Siekkinen, A.; Chen, J.; Xia, Y. Comparison of the surface-enhanced Raman scattering on sharp and truncated silver nanocubes. Chem. Phys. Lett. 2006, 247, 122–126.CrossRefADSGoogle Scholar
  34. [34]
    Wiley, B. J.; Im, S. H.; Li, Z. -Y.; McLellan, J. M.; Siekkinen, A.; Xia, Y. Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis. J. Phys. Chem. B 2006, 110, 15666–15675.PubMedCrossRefGoogle Scholar
  35. [35]
    Wiley, B. J.; Chen, Y.; McLellan, J. M.; Xiong, Y.; Li, Z. -Y.; Ginger, D. S.; Xia, Y. Synthesis and optical properties of silver nanobars and nanorice. Nano Lett. 2007, 7, 1032–1036.PubMedCrossRefGoogle Scholar
  36. [36]
    McLellan, J. M.; Li, Z. -Y.; Siekkinen, A. R.; Xia, Y. The SERS activity of a supported Ag nanocube strongly depends on its orientation relative to laser polarization. Nano Lett. 2007, 7, 1013–1017.PubMedCrossRefGoogle Scholar
  37. [37]
    Sherry, L. J.; Chang, S. H.; Schatz, G. C.; Van Duyne, R. P.; Wiley, B. J.; Xia, Y. Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano Lett. 2005, 5, 2034–2038.PubMedCrossRefGoogle Scholar
  38. [38]
    Chen, Y.; Munechika, K.; Ginger, D. S. Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles. Nano Lett. 2007, 7, 690–696.PubMedCrossRefGoogle Scholar
  39. [39]
    Chen, Y.; Munechika, K.; Plante, I. J. -L.; Munro, A. M.; Skrabalak, S.; Xia, Y.; Ginger, D. S. Excitation enhancement of CdSe quantum dots by single metal nanoparticles. Appl. Phys. Lett. 2008, 93, 053106.Google Scholar
  40. [40]
    Munechika, K.; Smith, J. M.; Chen, Y.; Ginger, D. S. Plasmon line widths of single silver nanoprisms as a function of particle size and plasmon peak position. J. Phys. Chem. C, 2007, 111, 18906–18911.CrossRefGoogle Scholar
  41. [41]
    Chen, Y.; Munechika, K.; Ginger, D. S. Bioenabled nanophotonics. MRS Bull. 2008, 33, 536–542.Google Scholar

Copyright information

© Tsinghua Press and Springer-Verlag GmbH 2008

Authors and Affiliations

  • Leslie Au
    • 1
  • Yeechi Chen
    • 1
  • Fei Zhou
    • 2
  • Pedro H. C. Camargo
    • 3
  • Byungkwon Lim
    • 3
  • Zhi-Yuan Li
    • 2
  • David S. Ginger
    • 1
  • Younan Xia
    • 3
    Email author
  1. 1.Department of ChemistryUniversity of WashingtonSeattleUSA
  2. 2.Institute of PhysicsChinese Academy of SciencesBeijingChina
  3. 3.Department of Biomedical EngineeringWashington UniversitySt. LouisUSA

Personalised recommendations