Nano Research

, Volume 1, Issue 4, pp 259–272 | Cite as

Random networks and aligned arrays of single-walled carbon nanotubes for electronic device applications

Open Access
Review Article


Singled-walled carbon nanotubes (SWNTs), in the form of ultrathin films of random networks, aligned arrays, or anything in between, provide an unusual type of electronic material that can be integrated into circuits in a conventional, scalable fashion. The electrical, mechanical, and optical properties of such films can, in certain cases, approach the remarkable characteristics of the individual SWNTs, thereby making them attractive for applications in electronics, sensors, and other systems. This review discusses the synthesis and assembly of SWNTs into thin film architectures of various types and provides examples of their use in digital electronic circuits with levels of integration approaching 100 transistors and in analog radio frequency (RF) systems with operating frequencies up to several gigahertz, including transistor radios in which SWNT transistors provide all of the active functionality. The results represent important steps in the development of an SWNT-based electronics technology that could find utility in areas such as flexible electronics, RF analog devices and others that might complement the capabilities of established systems.


Carbon nanotubes electronic devices thin-film transistors 


  1. [1]
    Avouris, P.; Chen, Z. H.; Perebeinos, V. Carbon-based electronics. Nat. Nanotechnol. 2007, 2, 605–615.CrossRefPubMedADSGoogle Scholar
  2. [2]
    Ouyang, M.; Huang, J. L.; Lieber, C. M. Fundamental electronic properties and applications of single-walled carbon nanotubes. Acc. Chem. Res. 2002, 35, 1018–1025.CrossRefPubMedGoogle Scholar
  3. [3]
    Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H. Ballistic carbon nanotube field-effect transistors. Nature 2003, 424, 654–657.CrossRefPubMedADSGoogle Scholar
  4. [4]
    Bozovic, D.; Bockrath, M.; Hafner, J. H.; Lieber, C. M.; Park, H.; Tinkham, M. Plastic deformations in mechanically strained single-walled carbon nanotubes. Phys. Rev. B 2003, 67, 033407.CrossRefADSGoogle Scholar
  5. [5]
    Zhou, X. J.; Park, J. Y.; Huang, S. M.; Liu, J.; McEuen, P. L. Band structure, phonon scattering, and the performance limit of single-walled carbon nanotube transistors. Phys. Rev. Lett. 2005, 95, 146805.CrossRefPubMedADSGoogle Scholar
  6. [6]
    Zhou, Y. X.; Gaur, A.; Hur, S. H.; Kocabas, C.; Meitl, M. A.; Shim, M.; Rogers, J. A. p-Channel, n-channel thin film transistors and p-n diodes based on single wall carbon nanotube networks. Nano Lett. 2004, 4, 2031–2035.CrossRefADSGoogle Scholar
  7. [7]
    Snow, E. S.; Novak, J. P.; Lay, M. D.; Houser, E. H.; Perkins, F. K.; Campbell, P. M. Carbon nanotube networks: Nanomaterial for macroelectronic applications. J. Vac. Sci. Technol. B 2004, 22, 1990–1994.CrossRefGoogle Scholar
  8. [8]
    Kocabas, C.; Pimparkar, N.; Yesilyurt, O.; Kang, S. J.; Alam, M. A.; Rogers, J. A. Experimental and theoretical studies of transport through large scale, partially aligned arrays of single-walled carbon nanotubes in thin film type transistors. Nano Lett. 2007, 7, 1195–1202.CrossRefPubMedADSGoogle Scholar
  9. [9]
    Alam, M. A.; Pimparkar, N.; Kumar, S.; Murthy, J. Theory of nanocomposite network transistors for macroelectronics applications. MRS Bull. 2006, 31, 466–470.Google Scholar
  10. [10]
    Lee, M.; Im, J.; Lee, B. Y.; Myung, S.; Kang, J.; Huang, L.; Kwon, Y. K.; Hong, S. Linker-free directed assembly of high-performance integrated devices based on nanotubes and nanowires. Nat. Nanotechnol. 2006, 1, 66–71.CrossRefPubMedADSGoogle Scholar
  11. [11]
    LeMieux, M. C.; Roberts, M.; Barman, S.; Jin, Y. W.; Kim, J. M.; Bao, Z. N. Self-sorted, aligned nanotube networks for thin-film transistors. Science 2008, 321, 101–104.CrossRefPubMedADSGoogle Scholar
  12. [12]
    Huang, L. M.; Jia, Z.; O’Brien, S. Orientated assembly of single-walled carbon nanotubes and applications. J. Mater. Chem. 2007, 17, 3863–3874.CrossRefGoogle Scholar
  13. [13]
    Li, Y. L.; Zhang, L. H.; Zhong, X. H.; Windle, A. H. Synthesis of high purity single-walled carbon nanotubes from ethanol by catalytic gas flow CVD reactions. Nanotechnology 2007, 18, 225604.CrossRefADSGoogle Scholar
  14. [14]
    Zhang, G. Y.; Mann, D.; Zhang, L.; Javey, A.; Li, Y. M.; Yenilmez, E.; Wang, Q.; McVittie, J. P.; Nishi, Y.; Gibbons, J.; Dai, H. J. Ultra-high-yield growth of vertical single-walled carbon nanotubes: Hidden roles of hydrogen and oxygen. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 16141–16145.CrossRefPubMedADSGoogle Scholar
  15. [15]
    Cao, Q.; Hur, S.-H.; Zhu, Z.-T.; Sun, Y.; Wang, C.; Meitl, M. A.; Shim, M.; Rogers, J. A. Highly bendable, transparent thin film transistors that use carbon nanotube based conductors and semiconductors with elastomeric dielectrics. Adv. Mater. 2006, 18, 304–309.CrossRefGoogle Scholar
  16. [16]
    Wu, Z.; Chen, Z.; Du, X.; Logan, J. M.; Sippel, J.; Nikolou, M.; Kamaras, K.; Reynolds, J. R.; Tanner, D. B.; Hebard, A. F.; Rinzler, A. G. Transparent, conductive carbon nanotube films. Science 2004, 305, 1273–1276.CrossRefPubMedADSGoogle Scholar
  17. [17]
    Gruner, G. Carbon nanotube films for transparent and plastic electronics. J. Mater. Chem. 2006, 16, 3533–3539.CrossRefGoogle Scholar
  18. [18]
    Odintsov, A. A. Schottky barriers in carbon nanotube heterojunctions. Phys. Rev. Lett. 2000, 85, 150–153.CrossRefPubMedADSGoogle Scholar
  19. [19]
    Fuhrer, M. S.; Nygard, J.; Shih, L.; Forero, M.; Yoon, Y. G.; Mazzoni, M. S. C.; Choi, H. J.; Ihm, J.; Louie, S. G.; Zettl, A.; McEuen, P. L. Crossed nanotube junctions. Science 2000, 288, 494–497.CrossRefPubMedADSGoogle Scholar
  20. [20]
    Kocabas, C.; Hur, S. H.; Gaur, A.; Meitl, M. A.; Shim, M.; Rogers, J. A. Guided growth of large-scale, horizontally aligned arrays of single-walled carbon nanotubes and their use in thin-film transistors. Small 2005, 1, 1110–1116.CrossRefPubMedGoogle Scholar
  21. [21]
    Kocabas, C.; Shim, M.; Rogers, J. A. Spatially selective guided growth of high-coverage arrays and random networks of single-walled carbon nanotubes and their integration into electronic devices. J. Am. Chem. Soc. 2006, 128, 4540–4541.CrossRefPubMedGoogle Scholar
  22. [22]
    Kocabas, C.; Kang, S. J.; Ozel, T.; Shim, M.; Rogers, J. A. Improved synthesis of aligned arrays of single-walled carbon nanotubes and their implementation in thin film type transistors. J. Phys. Chem. C 2007, 111, 17879–17886.CrossRefGoogle Scholar
  23. [23]
    Zhou, W.; Rutherglen, C.; Burke, P. Wafer scale synthesis of dense aligned arrays of single-walled carbon nanotubes. Nano Res. 2008, 1, 158–165.CrossRefGoogle Scholar
  24. [24]
    Dai, H. J. Carbon nanotubes: Synthesis, integration, and properties. Acc. Chem. Res. 2002, 35, 1035–1044.CrossRefPubMedGoogle Scholar
  25. [25]
    Hur, S.-H.; Park, O. O.; Rogers, J. A. Extreme bendability in thin film transistors that use carbon nanotubes transferred from high temperature growth substrates. Appl. Phys. Lett. 2005, 86, 243502.CrossRefADSGoogle Scholar
  26. [26]
    Kang, S. J.; Kocabas, C.; Kim, H. S.; Cao, Q.; Meitl, M. A.; Khang, D. Y.; Rogers, J. A. Printed multilayer superstructures of aligned single-walled carbon nanotubes for electronic, applications. Nano Lett. 2007, 7, 3343–3348.CrossRefPubMedADSGoogle Scholar
  27. [27]
    Cao, Q.; Xia, M. G.; Shim, M.; Rogers, J. A. Bilayer organic-inorganic gate dielectrics for high-performance, low-voltage, single-walled carbon nanotube thin-film transistors, complementary logic gates, and p-n diodes on plastic substrates. Adv. Funct. Mater. 2006, 16, 2355–2362.CrossRefGoogle Scholar
  28. [28]
    Hur, S. H.; Yoon, M. H.; Gaur, A.; Shim, M.; Facchetti, A.; Marks, T. J.; Rogers, J. A. Organic nanodielectrics for low voltage carbon nanotube thin film transistors and complementary logic gates. J. Am. Chem. Soc. 2005, 127, 13808–13809.CrossRefPubMedGoogle Scholar
  29. [29]
    Javey, A.; Guo, J.; Farmer, D. B.; Wang, Q.; Wang, D. W.; Gordon, R. G.; Lundstrom, M.; Dai, H. J. Carbon nanotube field-effect transistors with integrated ohmic contacts and high-K gate dielectrics. Nano Lett. 2004, 4, 447–450.CrossRefADSGoogle Scholar
  30. [30]
    Hur, S.-H.; Kocabas, C.; Gaur, A.; Shim, M.; Park, O. O.; Rogers, J. A. Printed thin film transistors and complementary logic gates that use polymer coated single-walled carbon nanotube networks. J. Appl. Phys. 2005, 98, 114302.CrossRefADSGoogle Scholar
  31. [31]
    Shim, M.; Javey, A.; Kam, N. W. S.; Dai, H. J. Polymer functionalization for air-stable n-type carbon nanotube field-effect transistors. J. Am. Chem. Soc. 2001, 123, 11512–11513.CrossRefPubMedGoogle Scholar
  32. [32]
    Cao, Q.; Zhu, Z. T.; Lemaitre, M. G.; Xia, M. G.; Shim, M.; Rogers, J. A. Transparent flexible organic thin-film transistors that use printed single-walled carbon nanotube electrodes. Appl. Phys. Lett. 2006, 88, 113511.CrossRefADSGoogle Scholar
  33. [33]
    Fortunato, E.; Barquinha, P.; Pimentel, A.; Goncalves, A.; Marques, A.; Pereira, L.; Martins, R. Fully transparent ZnO thin-film transistor produced at room temperature. Adv. Mater. 2005, 17, 590–594.CrossRefGoogle Scholar
  34. [34]
    Collins, P. C.; Arnold, M. S.; Avouris, P. Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 2001, 292, 706–709.CrossRefPubMedADSGoogle Scholar
  35. [35]
    Arnold, M. S.; Green, A. A.; Hulvat, J. F.; Stupp, S. I.; Hersam, M. C. Sorting carbon nanotubes by electronic structure using density differentiation. Nat. Nanotechnol. 2006, 1, 60–65.CrossRefPubMedADSGoogle Scholar
  36. [36]
    Zhang, G. Y.; Qi, P. F.; Wang, X. R.; Lu, Y. R.; Li, X. L.; Tu, R.; Bangsaruntip, S.; Mann, D.; Zhang, L.; Dai, H. J. Selective etching of metallic carbon nanotubes by gas-phase reaction. Science 2006, 314, 974–977.CrossRefPubMedADSGoogle Scholar
  37. [37]
    Strano, M. S.; Dyke, C. A.; Usrey, M. L.; Barone, P. W.; Allen, M. J.; Shan, H.; Kittrell, C.; Hauge, R. H.; Tour, J. M.; Smalley, R. E. Electronic structure control of single-walled carbon nanotube functionalization. Science 2003, 301, 1519–1522.CrossRefPubMedADSGoogle Scholar
  38. [38]
    Wang, C. J.; Cao, Q.; Ozel, T.; Gaur, A.; Rogers, J. A.; Shim, M. Electronically selective chemical functionalization of carbon nanotubes: Correlation between Raman spectral and electrical responses. J. Am. Chem. Soc. 2005, 127, 11460–11468.CrossRefPubMedGoogle Scholar
  39. [39]
    Hersam, M. C. Progress towards monodisperse single-walled carbon nanotubes. Nat. Nanotechnol. 2008, 3, 387–394.CrossRefPubMedADSGoogle Scholar
  40. [40]
    Cao, Q.; Kim, H. S.; Pimparkar, N.; Kulkarni, J. P.; Wang, C. J.; Shim, M.; Roy, K.; Alam, M. A.; Rogers, J. A. Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature 2008, 454, 495–500.CrossRefPubMedADSGoogle Scholar
  41. [41]
    Pimparkar, N.; Cao, Q.; Rogers, J. A.; Alam, M. A. Theory and practice of “striping” for improved on/off ratio in carbon nanonet thin film transistors, 2008, unpublished work.Google Scholar
  42. [42]
    Kang, S. J.; Kocabas, C.; Ozel, T.; Shim, M.; Pimparkar, N.; Alam, M. A.; Rotkin, S. V.; Rogers, J. A. High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nat. Nanotechnol. 2007, 2, 230–236.CrossRefPubMedADSGoogle Scholar
  43. [43]
    Pimparkar, N.; Kocabas, C.; Kang, S. J.; Rogers, J.; Alam, M. A. Limits of performance gain of aligned CNT over randomized network: Theoretical predictions and experimental validation. IEEE Electron Device Lett. 2007, 28, 593–595.CrossRefADSGoogle Scholar
  44. [44]
    Cao, Q.; Xia, M. G.; Kocabas, C.; Shim, M.; Rogers, J. A.; Rotkin, S. V. Gate capacitance coupling of singled-walled carbon nanotube thin-film transistors. Appl. Phys. Lett. 2007, 90, 023516.CrossRefADSGoogle Scholar
  45. [45]
    Chen, J.; Klinke, C.; Afzali, A.; Avouris, P. Self-aligned carbon nanotube transistors with charge transfer doping. Appl. Phys. Lett. 2005, 86, 123108.CrossRefADSGoogle Scholar
  46. [46]
    Zhang, Y.; Ichihashi, T.; Landree, E.; Nihey, F.; Iijima, S. Heterostructures of single-walled carbon nanotubes and carbide nanorods. Science 1999, 285, 1719–1722.CrossRefPubMedGoogle Scholar
  47. [47]
    Seidel, R. V.; Graham, A. P.; Rajasekharan, B.; Unger, E.; Liebau, M.; Duesberg, G. S.; Kreupl, F.; Hoenlein, W. Bias dependence and electrical breakdown of small diameter single-walled carbon nanotubes. J. Appl. Phys. 2004, 96, 6694–6699.CrossRefADSGoogle Scholar
  48. [48]
    Baumgardner, J. E.; Pesetski, A. A.; Murduck, J. M.; Przybysz, J. X.; Adam, J. D.; Zhang, H. Inherent linearity in carbon nanotube field-effect transistors. Appl. Phys. Lett. 2007, 91, 052107.CrossRefADSGoogle Scholar
  49. [49]
    Appenzeller, J. Carbon nanotubes for high-performance electronics — Progress and prospect. Proc. IEEE 2008, 96, 201–211.CrossRefGoogle Scholar
  50. [50]
    Zhong, Z. H.; Gabor, N. M.; Sharping, J. E.; Gaeta, A. L.; McEuen, P. L. Terahertz time-domain measurement of ballistic electron resonance in a single-walled carbon nanotube. Nat. Nanotechnol. 2008, 3, 201–205.CrossRefPubMedGoogle Scholar
  51. [51]
    Le Louarn, A.; Kapche, F.; Bethoux, J. M.; Happy, H.; Dambrine, G.; Derycke, V.; Chenevier, P.; Izard, N.; Goffman, M. F.; Bourgoin, J. P.; Derycke, V.; Chenevier, P.; Izard, N.; Goffman, M. F.; Bourgoin, J. P. Intrinsic current gain cutoff frequency of 30 GHz with carbon nanotube transistors. Appl. Phys. Lett. 2007, 90, 233108.CrossRefADSGoogle Scholar
  52. [52]
    Kocabas, C.; Kim, H. S.; Banks, T.; Rogers, J. A.; Pesetski, A. A.; Baumgardner, J. E.; Krishnaswamy, S. V.; Zhang, H. Radio frequency analog electronics based on carbon nanotube transistors. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 1405–1409.CrossRefPubMedADSGoogle Scholar
  53. [53]
    Kocabas, C.; Dunham, S.; Cao, Q.; Cimino, K.; Ho, X. N.; Kim, H. S.; Baumgardner, J. E.; Pesetski, A. A.; Zhang, H.; Banks, T.; Feng, M.; Rogers, J. A. High frequency performance of sub-micron quasi-ballistic carbon nanotube array transistors, 2008, unpublished work.Google Scholar
  54. [54]
    Nouchi, R.; Tomita, H.; Ogura, A.; Kataura, H.; Shiraishi, M. Logic circuits using solution-processed single-walled carbon nanotube transistors. Appl. Phys. Lett. 2008, 92, 253507.CrossRefADSGoogle Scholar
  55. [55]
    Patil, N.; Lin, A.; Myers, E. R.; Wong, H. S. P.; Mitra, S. Integrated wafer-scale growth and transfer of directional carbon nanotubes and misaligned-carbon-nanotubeimmune logic structures. Proc. VLSI Technology Symp. 2008, 205–206.Google Scholar
  56. [56]
    Crone, B.; Dodabalapur, A.; Lin, Y. Y.; Filas, R. W.; Bao, Z.; LaDuca, A.; Sarpeshkar, R.; Katz, H. E.; Li, W. Large-scale complementary integrated circuits based on organic transistors. Nature 2000, 403, 521–523.CrossRefPubMedADSGoogle Scholar
  57. [57]
    Menard, E.; Meitl, M. A.; Sun, Y. G.; Park, J. U.; Shir, D. J. L.; Nam, Y. S.; Jeon, S.; Rogers, J. A. Micro-and nanopatterning techniques for organic electronic and optoelectronic systems. Chem. Rev. 2007, 107, 1117–1160.CrossRefPubMedGoogle Scholar
  58. [58]
    Chason, M.; Brazis, P. W.; Zhang, H.; Kalyanasundaram, K.; Gamota, D. R. Printed organic semiconducting devices. Proc. IEEE 2005, 93, 1348–1356.CrossRefGoogle Scholar
  59. [59]
    Pesetski, A. A.; Baumgardner, J. E.; Krishnaswamy, S. V.; Zhang, H.; Kocabas, C.; Banks, T.; Rogers, J. A.; Adam, J. D. A 500 MHz carbon nanotube field-effect transistor oscillator. Appl. Phys. Lett. 2008, 93, 123506.CrossRefADSGoogle Scholar
  60. [60]
    Reuss, R. H.; Chalamala, B. R.; Moussessian, A.; Kane, M. G.; Kumar, A.; Zhang, D. C.; Rogers, J. A.; Hatalis, M.; Temple, D.; Moddel, G.; Eliasson, B. J.; Estes, M. J.; Kunze, J.; Handy, E. S.; Harmon, E. S.; Salzman, D. B.; Woodall, J. M.; Alam, M. A.; Murthy, J. Y.; Jacobsen, S. C.; Olivier, M.; Markus, D.; Campbell, P. M.; Snow, E. Macroelectronics: Perspectives on technology and applications. Proc. IEEE 2005, 93, 1239–1256.CrossRefGoogle Scholar
  61. [61]
    Ahn, J. H.; Kim, H. S.; Lee, K. J.; Jeon, S.; Kang, S. J.; Sun, Y. G.; Nuzzo, R. G.; Rogers, J. A. Heterogeneous threedimensional electronics by use of printed semiconductor nanomaterials. Science 2006, 314, 1754–1757.CrossRefPubMedADSGoogle Scholar
  62. [62]
    Sun, Y. G.; Rogers, J. A. Inorganic semiconductors for flexible electronics. Adv. Mater. 2007, 19, 1897–1916.CrossRefGoogle Scholar
  63. [63]
    Eda, G.; Fanchini, G.; Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 2008, 3, 270–274.CrossRefPubMedGoogle Scholar
  64. [64]
    Li, X. L.; Wang, X. R.; Zhang, L.; Lee, S. W.; Dai, H. J. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 2008, 319, 1229–1232.CrossRefPubMedADSGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Department of Materials Science and EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  3. 3.Department of Electrical and Computer EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  4. 4.Department of Mechanical Science and EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  5. 5.Frederick-Seitz Materials Research LaboratoryUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  6. 6.Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations