Nano Research

, Volume 1, Issue 4, pp 292–302 | Cite as

Facile tuning of superhydrophobic states with Ag nanoplates

Open Access
Research Article


GaAs wafers have been decorated with Ag nanoplates through direct galvanic reaction between aqueous AgNO3 solutions and GaAs, resulting in Ag nanoplate/GaAs composite surfaces with varying hydrophobocity after the Ag nanoplates are coated with self-assembled monolayers of alkyl thiol molecules. By carefully controlling the reaction conditions, such as growth time and concentration of the AgNO3 solution, the size, thickness, and surface roughness of the individual Ag nanoplates can be tuned in order to produce different topographic structures and roughness of the composite surfaces, which in turn infl uences the hydrophobicity of the surfaces. The as-synthesized composite surfaces have been found to exhibit various levels of hydrophobicity and different wetting states such as the Wenzel wetting state, Cassie impregnating wetting state, and Cassie nonwetting state. The relationship between surface structure and hydrophobic state is also discussed.


Superhydrophobic Cassie Wendel Ag nanoplates GaAs self-assembled monolayers 

Supplementary material

12274_2008_8030_MOESM1_ESM.pdf (585 kb)
Supplementary material, approximately 588 KB.


  1. [1]
    Yuan, J.; Liu, X.; Akbulut, O.; Hu, J.; Suib, S. L.; Kong, J.; Stellacci, F. Superwetting nanowire membranes for selective absorption. Nat. Nanotechnol. 2008, 3, 332–336.CrossRefPubMedADSGoogle Scholar
  2. [2]
    Lahann, J. Nanomaterials clean up. Nat. Nanotechnol. 2008, 3, 320–321.CrossRefPubMedADSGoogle Scholar
  3. [3]
    Sethi, S.; Ge, L.; Ci, L.; Ajayan, P. M.; Dhinojwala, A. Gecko-inspired carbon nanotube-based self-cleaning adhesives. Nano Lett. 2008, 8, 822–825.CrossRefPubMedADSGoogle Scholar
  4. [4]
    Sun, T.; Feng, L.; Gao, X.; Jiang, L. Bioinspired surfaces with special wettability. Acc. Chem. Res. 2005, 38, 644–652.CrossRefPubMedGoogle Scholar
  5. [5]
    Feng, X.; Jiang, L. Design and creation of superwetting/antiwetting surfaces. Adv. Mater. 2006, 18, 3063–3078.CrossRefGoogle Scholar
  6. [6]
    Nosonovsky, M.; Bhushan, B. Biologically inspired surfaces: Broadening the scope of roughness. Adv. Funct. Mater. 2008, 18, 1–13.CrossRefGoogle Scholar
  7. [7]
    Roach, P.; Shirtcliffe, N. J.; Newton, M. I. Progress in superhydrophobic surface development. Soft Matter 2008, 4, 224–240.CrossRefGoogle Scholar
  8. [8]
    Li, X.-M.; Reinhoudt, D.; Crego-Calama, M. What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces. Chem. Soc. Rev. 2007, 36, 1350–1368.CrossRefPubMedGoogle Scholar
  9. [9]
    Zhang, X.; Shi, F.; Niu, J.; Jiang, Y.; Wang, Z. Superhydrophobic surfaces: From structural control to functional application. J. Mater. Chem. 2008, 18, 621–633.CrossRefGoogle Scholar
  10. [10]
    Ma, M.; Hill, R. M. Superhydrophobic surfaces. Curr. Opin. Colloid Interface Sci. 2006, 11, 193–202.CrossRefGoogle Scholar
  11. [11]
    Ou, J.; Perot, B.; Rothstein, J. P. Laminar drag reduction in microchannels using ultrahydrophobic surfaces. Phys. Fluids 2004, 16, 4635–4643.CrossRefADSGoogle Scholar
  12. [12]
    Patankar, N. A. Transition between superhydrophobic states on rough surfaces. Langmuir 2004, 20, 7097–7102.CrossRefPubMedGoogle Scholar
  13. [13]
    Patankar, N. A. On the modeling of hydrophobic contact angles on rough surfaces. Langmuir 2003, 19, 1249–1253.CrossRefGoogle Scholar
  14. [14]
    Patankar, N. A. Mimicking the lotus effect: Influence of double roughness structures and slender pillars. Langmuir 2004, 20, 8209–8213.CrossRefPubMedGoogle Scholar
  15. [15]
    Feng, L.; Zhang, Y.; Xi, J.; Zhu, Y.; Wang, N.; Xia, F.; Jiang, L. Petal effect: A superhydrophobic state with high adhesive force. Langmuir 2008, 24, 4114–4119.CrossRefPubMedGoogle Scholar
  16. [16]
    Wenzel, R. N. Resistance of solid surfaces to wetting by water. J. Ind. Eng. Chem. 1936, 28, 988–994.CrossRefGoogle Scholar
  17. [17]
    Cassie, B. D.; Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 1944, 40, 546–551.CrossRefGoogle Scholar
  18. [18]
    Nosonovsky, M.; Bhushan, B. Biominetic superhydrophobic surfaces: Multiscale approach. Nano Lett. 2007, 7, 2633–2637.CrossRefPubMedADSGoogle Scholar
  19. [19]
    Cho, W. K.; Choi, I. S. Fabrication of hairy polymeric films inspired by Geckos: Wetting and high adhesion properties. Adv. Funct. Mater. 2008, 18, 1089–1096.CrossRefGoogle Scholar
  20. [20]
    Cao, L.; Hu, H.-H.; Gao, D. Design and fabrication of micro-textures for inducing a superhydrophobic behavior on hydrophilic materials. Langmuir 2007, 23, 4310–4313.CrossRefPubMedGoogle Scholar
  21. [21]
    Wang, M.-F.; Raghunathan, N.; Ziaie, B. A nonlithographic top-down electrochemical approach for creating hierarchical (micro-nano) superhydrophobic silicon surfaces. Langmuir 2007, 23, 2300–2303.CrossRefPubMedGoogle Scholar
  22. [22]
    Winkleman, A.; Gotesman, G.; Yoffe, A.; Naaman, R. Immobilizing a drop of water: Fabricating highly hydrophobic surfaces that pin water droplets. Nano Lett. 2008, 8, 1241–1245.CrossRefPubMedADSGoogle Scholar
  23. [23]
    Love, J. C.; Gates, B. D.; Wolfe, D. B.; Paul, K. E.; Whitesides, G. M. Fabrication and wetting properties of metallic half-shells with submicron diameters. Nano Lett. 2002, 2, 891–894.CrossRefADSGoogle Scholar
  24. [24]
    Larmour, I. A.; Bell, S. E. J.; Saunders, G. C. Remarkably simple fabrication of superhydrophobic surfaces using electroless galvanic deposition. Angew. Chem. Int. Ed. 2007, 46, 1710–1712.CrossRefGoogle Scholar
  25. [25]
    Li, Y.; Li, C.; Cho, S. O.; Duan, G.; Cai, W. Silver hierarchical bowl-like array: Synthesis, superhydrophobicity, and optical properties. Langmuir 2007, 23, 9802–9807.CrossRefPubMedGoogle Scholar
  26. [26]
    Zhao, Y.; Lu, Q.; Chen, D.; Wei, Y. Superhydrophobic modification of polyimide films based on gold-coated porous silver nanostructures and self-assembled monolayers. J. Mater. Chem. 2006, 16, 4504–4509.CrossRefGoogle Scholar
  27. [27]
    Zhao, N.; Shi, F.; Wang, Z.; Zhang, X. Combining layer-by-layer assembly with electrodeposition of silver aggregates for fabricating superhydrophobic surfaces. Langmuir 2005, 21, 4713–4716.CrossRefPubMedGoogle Scholar
  28. [28]
    Jiang, Y.; Wang, Z.; Yu, X.; Shi, F.; Xu, H.; Zhang, X. Self-assembled monolayers of dendron thiols for electrodeposition of gold nanostructures: Toward fabrication of superhydrophobic/superhydrophilic surfaces and pH-responsive surfaces. Langmuir 2005, 21, 1986–1990.CrossRefPubMedGoogle Scholar
  29. [29]
    Wang, S.; Feng, L.; Liu, H.; Sun, T.; Zhang, X.; Jiang, L.; Zhu, D. Manipulation of surface wettability between superhydrophobicity and superhydrophilicity on copper films. ChemPhysChem 2005, 6, 1475–1478.CrossRefPubMedGoogle Scholar
  30. [30]
    Mundo, R. D.; Palumbo, F.; d’Agostino, R. Nanotexturing of polystyrene surface in fluorocarbon plasmas: From sticky to slippery superhydrophobicity. Langmuir 2008, 24, 5044–5051.CrossRefPubMedGoogle Scholar
  31. [31]
    Gao, L.; McCarthy, T. J. A commercially available perfectly hydrophobic material. Langmuir 2007, 23, 9125–9127.CrossRefPubMedGoogle Scholar
  32. [32]
    Xie, Q.; Fan, G.; Zhao, N.; Guo, X.; Xu, J.; Dong, J.; Zhang, L.; Zhang, Y.; Han, C. C. Facile creation of a bionic super-hydrophobic block copolymer surface. Adv. Mater. 2004, 16, 1830–1833.CrossRefGoogle Scholar
  33. [33]
    Balu, B.; Breedveld, V.; Hess, D. W. Fabrication of “rolloff” and “sticky” superhydrophobic cellulose surfaces via plasma processing. Langmuir 2008, 24, 4785–4790.CrossRefPubMedGoogle Scholar
  34. [34]
    Jin, M.; Feng, X.; Feng, L.; Sun, T.; Zhai, J.; Li, T.; Jiang, L. Superhydrophobic aligned polystyrene nanotube fi lms with high adhesive force. Adv. Mater. 2005, 17, 1977–1981.CrossRefGoogle Scholar
  35. [35]
    Zhai, L.; Cebeci, F. C.; Cohen, R. E.; Rubner, M. F. Stable superhydrophobic coating from polyelectrolyte multilayers. Nano Lett. 2004, 4, 1349–1353.CrossRefADSGoogle Scholar
  36. [36]
    Namavar, F.; Cheung, C. L.; Sabirianov, R. F.; Mei, W.-N.; Zeng, X. C.; Wang, G.; Haider, H.; Garvin, K. L. Lotus effect in engineered zirconia. Nano Lett. 2008, 8, 988–996.CrossRefPubMedADSGoogle Scholar
  37. [37]
    Coffinier, Y.; Janel, S.; Addad, A.; Blossey, R.; Gengembre, L.; Payen, E.; Boukherroub, R. Preparation of superhydrophobic silicon oxide nanowire surfaces. Langmuir 2007, 23, 1608–1611.CrossRefPubMedGoogle Scholar
  38. [38]
    Ming, W.; Wu, D.; van Benthem, R.; de With, G. Superhydrophobic films from raspberry-like particles. Nano Lett. 2005, 5, 2298–2301.CrossRefPubMedADSGoogle Scholar
  39. [39]
    Nakajima, A.; Hashimoto, K.; Watanabe, T. Transparent superhydrophobic thin fi lms with self-cleaning properties. Langmuir 2000, 16, 7044–7047.CrossRefGoogle Scholar
  40. [40]
    Pastine, S. J.; Okawa, D.; Kessler, B.; Rolandi, M.; Llorente, M.; Zettl, A.; Frechet, J. M. J. A facile and patternable method for the superface modification of carbon nanotube forests using perfl uoroarylazides. J. Am. Chem. Soc. 2008, 130, 4238–4239.CrossRefPubMedGoogle Scholar
  41. [41]
    Zhu, L.; Xiu, Y.; Xu, J.; Tamirisa, P. A.; Hess, D. W.; Wong, C. P. Superhydrophobicity on two-tier rough surfaces fabricated by controlled growth of aligned carbon nanotube arrays coated with fluorocarbon. Langmuir 2005, 21, 11208–11212.CrossRefPubMedGoogle Scholar
  42. [42]
    Lau, K. K. S.; Bico, J.; Teo, K. B. K.; Chhowalla, M.; Amaratunga, G. A. J.; Milne, W. I.; McKinley, G. H.; Gleason, K. K. Superhydrophobic carbon nanotube forests. Nano Lett. 2003, 3, 1701–1705.CrossRefADSGoogle Scholar
  43. [43]
    Wang, S.; Jiang, L. Definition of superhydrophobic states. Adv. Mater. 2007, 19, 3423–3424.CrossRefADSGoogle Scholar
  44. [44]
    Lafuma, A.; Quere, D. Superhydrophobic states. Nat. Mater. 2003, 2, 457–460.CrossRefPubMedADSGoogle Scholar
  45. [45]
    Bormashenko, E.; Pogreb, R.; Stein, T.; Whyman, G.; Erlich, M.; Musin, A.; Machavariani, V.; Aurbach, D. Characterization of rough surfaces with vibrated drops. Phys. Chem. Chem. Phys. 2008, 10, 4056–4061.CrossRefPubMedGoogle Scholar
  46. [46]
    McHale, G. Cassie and Wenzel: were they really so wrong? Langmuir 2007, 23, 8200–8205.CrossRefPubMedGoogle Scholar
  47. [47]
    Marmur, A. Soft contact: measurement and interpretation of contact angles. Soft Matter 2006, 2, 12–17.CrossRefADSGoogle Scholar
  48. [48]
    Sun, Y.; Wiederrecht, G. P. Surfactantless synthesis of silver nanoplates and their application in SERS. Small 2007, 3, 1964–1975.CrossRefPubMedGoogle Scholar
  49. [49]
    Sun, Y. Direct growth of dense, pristine metal nanoplates with well-controlled dimensions on semiconductor substrates. Chem. Mater. 2007, 19, 5845–5847.CrossRefGoogle Scholar
  50. [50]
    Sun, Y.; Yan, H.; Wu, X. Effects of visible and synchrotron X-ray radiation on the growth of silver nanoplates on n-GaAs wafers: A comparative study. Appl. Phys. Lett. 2008, 92, 183109.CrossRefADSGoogle Scholar
  51. [51]
    Sun, Y.; Yan, H.; Wiederrecht, G. P. Comparative study on the growth of silver nanoplates on GaAs substrates by electron microscopy, synchrotron X-ray diffraction, and optical spectroscopy. J. Phys. Chem. C 2008, 112, 8928–8938.CrossRefGoogle Scholar
  52. [52]
    Hong, X.; Gao, X.; Jiang, L. Application of superhydrophobic surface with high adhesive force in no lost transport of superparamagnetic microdroplet. J. Am. Chem. Soc. 2007, 129, 1478–1479.CrossRefPubMedGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  1. 1.Argonne National LaboratoryCenter for Nanoscale MaterialsArgonneUSA
  2. 2.Department of Mechanical Engineering, College of Engineering and ScienceClemson UniversityClemsonUSA

Personalised recommendations