Nano Research

, 1:242

Porous LiFePO4/NiP Composite nanospheres as the cathode materials in rechargeable lithium-ion batteries

  • Chunsheng Li
  • Shaoyan Zhang
  • Fangyi Cheng
  • Weiqiang Ji
  • Jun Chen
Open Access
Research Article

Abstract

We report the synthesis of porous LiFePO4/NiP composite nanospheres and their application in rechargeable lithium-ion batteries. A simple one-step spraying technique was developed to prepare LiFePO4/NiP composite nanospheres with an electrical conductivity 103–104 times that of bulk particles of LiFePO4. Electrochemical measurements show that LiFePO4 nanospheres with a uniform loading of 0.86 wt%–1.50 wt% NiP exhibit high discharge capacity, good cycling reversibility, and low apparent activation energies. The superior electrode performance of the as-prepared composite nanospheres results from the greatly enhanced electrical conductivity and porous structure of the materials.

Keywords

Nanospheres LiFePO4/NiP spraying electrical conductivity rechargeable lithium-ion batteries 

Supplementary material

12274_2008_8028_MOESM1_ESM.pdf (234 kb)
Supplementary material, approximately 233 KB.

References

  1. [1]
    Tombler, T. W.; Zhou, C. W.; Alexseyev, L.; Kong, J.; Dai, H. J.; Lei, L.; Jayanthi, C. S.; Tang, M. J.; Wu, S. Y. Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation. Nature 2000, 405, 769–772.CrossRefGoogle Scholar
  2. [2]
    Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P. D. Nanowire dye-sensitized solar cells. Nat. Mater. 2005, 4, 455–459.CrossRefGoogle Scholar
  3. [3]
    Wang, Z. L. Energy harvesting for self-powered nanosystems. Nano Res. 2008, 1, 1–8.CrossRefGoogle Scholar
  4. [4]
    Liu, J. F.; Chen, W.; Liu, X. W.; Zhou, K. B.; Li, Y. D. Au/LaVO4 Nanocomposite: Preparation, characterization, and catalytic activity for CO oxidation. Nano Res. 2008, 1, 46–55.CrossRefGoogle Scholar
  5. [5]
    Padhi, A. K.; Nanjundaswamy, K. S.; Masquelier, C.; Okada, S.; Goodenough, J. B. Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates. J. Electrochem. Soc. 1997, 144, 1609–1613.CrossRefGoogle Scholar
  6. [6]
    Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.CrossRefGoogle Scholar
  7. [7]
    Whittingham, M. S. Lithium batteries and cathode materials. Chem. Rev. 2004, 104, 4271–4301.CrossRefGoogle Scholar
  8. [8]
    Yamada, A.; Koizumi, H.; Nishimura, S. I.; Sonoyama, N.; Kanno, R.; Yonemura, M.; Nakamura, T.; Kobayashi, Y. Room-temperature miscibility gap in LixFePO4. Nat. Mater. 2006, 5, 357–360.CrossRefGoogle Scholar
  9. [9]
    Whittingham, M. S. Materials challenges facing electrical energy storage. MRS Bull. 2008, 33, 411–s419.Google Scholar
  10. [10]
    Chen, Z. H.; Dahn, J. R. Reducing carbon in LiFePO4/C composite electrodes to maximize specific energy, volumetric energy, and tap density. J. Electrochem. Soc. 2002, 149, A1184–A1189.CrossRefGoogle Scholar
  11. [11]
    Huang, H.; Yin, S. C.; Nazar, L. F. sApproaching theoretical capacity of LiFePO4 at room temperature at high rates. Electrochem. Solid-State Lett. 2001, 4, A170–A172.CrossRefGoogle Scholar
  12. [12]
    Takeuchi, T.; Tabuchi, M.; Nakashima, A.; Nakamura, T.; Miwa, Y.; Kageyama, H.; Tatsumi, K. Preparation of dense LiFePO4/C composite positive electrodes using spark-plasma-sintering process. J. Power Sources 2005, 146, 575–579.CrossRefGoogle Scholar
  13. [13]
    Xie, H. M.; Wang, R. S.; Ying, J. R.; Zhang, L. Y.; Jalbout, A. F.; Yu, H. Y.; Yang, G. L.; Pan, X. M.; Su, Z. M. Optimized LiFePO4-polyacene cathode material for lithium-ion batteries. Adv. Mater. 2006, 18, 2609–2613.CrossRefGoogle Scholar
  14. [14]
    Prosini, P. P.; Carewska, M.; Scaccia, S.; Wisniewski, P.; Pasquali, M. Long-term cyclability of nanostructured LiFePO4. Electrochim. Acta 2003, 48, 4205–4211.CrossRefGoogle Scholar
  15. [15]
    Chung, S. Y.; Bloking, J. T.; Chiang, Y. M. Electronically conductive phospho-olivines as lithium storage electrodes. Nat. Mater. 2002, 1, 123–128.CrossRefGoogle Scholar
  16. [16]
    Herle, P. S.; Ellis, B.; Coombs, N.; Nazar, L. F. Nano-network electronic conduction in iron and nickel olivine phosphates. Nat. Mater. 2004, 3, 147–152.CrossRefGoogle Scholar
  17. [17]
    Nakamura, T.; Miwa, Y.; Tabuchi, M.; Yamada, Y. Structural and surface modifications of LiFePO4 olivine particles and their electrochemical properties. J. Electrochem. Soc. 2006, 153, A1108–A1114.CrossRefGoogle Scholar
  18. [18]
    Gabrisch, H.; Wilcox, J. D.; Doeff, M. M. Carbon surface layers on a high-rate LiFePO4. Electrochem. Solid-State Lett. 2006, 9, A360–A363.CrossRefGoogle Scholar
  19. [19]
    Lee, J.; Teja, A. S. Synthesis of LiFePO4 micro and nanoparticles in supercritical water. Mater. Lett. 2006, 60, 2105–2109.CrossRefGoogle Scholar
  20. [20]
    Ng, S. H.; Wang, J. Z.; Wexler, D.; Konstantinov, K.; Guo, Z. P.; Liu, H. K. Highly reversible lithium storage in spheroidal carbon-coated silicon nanocomposites as anodes for lithium-ion batteries. Angew. Chem. Int. Ed. 2006, 45, 6896–6899.CrossRefGoogle Scholar
  21. [21]
    Cheng, F. Y.; Zhang, S. Y.; Tao, Z. T.; Liang, J.; Chen, J. LiFePO4/NiP composite microspheres as the cathode materials of rechargeable lithium-ion batteries. In IMLB 2008 Abstract 395; The 14th Int. Meeting on Lithium Batteries Tianjin, China, June 22–28, 2008.Google Scholar
  22. [22]
    Chen, J.; Xu, L. N.; Li, W. Y.; Gou, X. L. Alpha-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications. Adv. Mater. 2005, 17, 582–286.CrossRefGoogle Scholar
  23. [23]
    Yamada, A.; Chung, S. C.; Hinokuma, K. Optimized LiFePO4 for lithium battery cathodes. J. Electrochem. Soc. 2001, 148, A224–A229.CrossRefGoogle Scholar
  24. [24]
    Izumi, F.; Ikeda, T. A Rietveld analysis program RIETAN-98 and its applications to zeolites. Mater. Sci. Forum 2000, 321–324, 198–203.CrossRefGoogle Scholar
  25. [25]
    Li, W. Y.; Li, C. S.; Zhou, C. Y.; Ma, H.; Chen, J. Metallic magnesium nano/mesoscale structures: Their shape-controlled preparation and Mg/Air battery applications. Angew. Chem. Int. Ed. 2006, 45, 6009–6012.CrossRefGoogle Scholar
  26. [26]
    Ma, H.; Cheng, F. Y.; Chen, J.; Zhao, J. Z.; Li, C. S.; Tao, Z. L.; Liang, J. Nest-like silicon nanospheres for high-capacity lithium storage. Adv. Mater. 2007, 19, 4067–4070.CrossRefGoogle Scholar
  27. [27]
    Ma, H.; Zhang, S. Y.; Ji, W. Q.; Tao, Z. L.; Chen, J. Alpha-CuV2O6 nanowires: Hydrothermal synthesis and primary lithium battery application. J. Am. Chem. Soc. 2008, 130, 5361–5367.CrossRefGoogle Scholar
  28. [28]
    Ma, H.; Li, C. S.; Su, Y.; Chen, J. Studies on the vapour-transport synthesis and electrochemical properties of zinc micro-, meso-and nanoscale structures. J. Mater. Chem. 2007, 17, 684–691.CrossRefGoogle Scholar

Copyright information

© Tsinghua Press and Springer-Verlag GmbH 2008

Authors and Affiliations

  • Chunsheng Li
    • 1
  • Shaoyan Zhang
    • 1
  • Fangyi Cheng
    • 1
  • Weiqiang Ji
    • 1
  • Jun Chen
    • 1
  1. 1.Institute of New Energy Material Chemistry, Key Laboratory of Energy Material Chemistry (Tianjin) and Engineering Research Center of High-Energy Storage and Conversion (Ministry of Education)Nankai UniversityTianjinChina

Personalised recommendations