Nano Research

, Volume 1, Issue 3, pp 235–241 | Cite as

Bacteriophage M13 as a scaffold for preparing conductive polymeric composite fibers

Open Access
Research Article

Abstract

Using biological templates to build one-dimensional functional materials holds great promise in developing nanosized electrical devices, sensors, catalysts, and energy storage units. In this communication, we report a versatile assembly process for the preparation of water-soluble conductive polyaniline (PANi)/M13 composite nanowires by employing the bacteriophage M13 as a template. The surface lysine residues of M13 can be derivatized with carboxylic groups to improve its binding ability to the aniline; the resulting modified M13 is denoted as m-M13. Highly negatively-charged poly(sulfonated styrene) was used both as a dopant acid and a stabilizing agent to enhance the stability of the composite fibers in aqueous solution. A transparent solution of the conductive PANi/m-M13 composite fibers can be readily obtained without any further purification step. The fibers can be easily fabricated into thin conductive films due to their high aspect ratio and good solubility in aqueous solution. This synthesis discloses a unique and versatile way of using bionanorods to produce composite fibrillar materials with narrow dispersity, high aspect ratio, and high processibility, which may have many potential applications in electronics, optics, sensing, and biomedical engineering.

Keywords

Bacteriophage M13 nanofiber conductive polymer self-assembly bioconjugation 

References

  1. [1]
    Cui, Y.; Wei, Q. Q.; Park, H. K.; Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001, 293, 1289–1292.CrossRefGoogle Scholar
  2. [2]
    Yang, C.; Zhong, Z. H.; Lieber, C. M. Encoding electronic properties by synthesis of axial modulation-doped silicon nanowires. Science 2005, 310, 1304–1307.CrossRefGoogle Scholar
  3. [3]
    Hopkins, D. S.; Pekker, D.; Goldbart, P. M.; Bezryadin, A. Quantum interference device made by DNA templating of superconducting nanowires. Science 2005, 308, 1762–1765.CrossRefGoogle Scholar
  4. [4]
    Ferry, D. K. Materials science: Nanowires in nanoelectronics. Science 2008, 319, 579–580.CrossRefGoogle Scholar
  5. [5]
    Ellis-Behnke, R. G.; Liang, Y. X.; You, S. W.; Tay, D. K. C.; Zhang, S. G.; So, K. F.; Schneider, G. E. Nano neuro knitting: Peptide nanofiber scaffold for brain repair and axon regeneration with functional return of vision. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 5054–5059.CrossRefGoogle Scholar
  6. [6]
    Mershin, A.; Cook, B.; Kaiser, L.; Zhang, S. G. A classic assembly of nanobiomaterials. Nat. Biotechnol. 2005, 23, 1379–1380.CrossRefGoogle Scholar
  7. [7]
    Sargeant, T. D.; Guler, M. O.; Oppenheimer, S. M.; Mata, A.; Satcher, R. L.; Dunand, D. C.; Stupp, S. I. Hybrid bone implants: Self-assembly of peptide amphiphile nanofibers within porous titanium. Biomaterials 2008, 29, 161–171.CrossRefGoogle Scholar
  8. [8]
    Jiang, H. Z.; Guler, M. O.; Stupp, S. I. The internal structure of self-assembled peptide amphiphiles nanofibers. Soft Matter. 2007, 3, 454–462.CrossRefGoogle Scholar
  9. [9]
    Fonoberov, V. A.; Balandin, A. A. Low-frequency vibrational modes of viruses used for nanoelectronic selfassemblies. Phys. Status Solidi B 2004, 241, R67–R69.CrossRefGoogle Scholar
  10. [10]
    Nam, K. T.; Kim, D. W.; Yoo, P. J.; Chiang, C. Y.; Meethong, N.; Hammond, P. T.; Chiang, Y. M.; Belcher, A. M. Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 2006, 312, 885–888.CrossRefGoogle Scholar
  11. [11]
    Mao, C. B.; Solis, D. J.; Reiss, B. D.; Kottmann, S. T.; Sweeney, R. Y.; Hayhurst, A.; Georgiou, G.; Iverson, B.; Belcher, A. M. Virus-based genetic toolkit for the directed synthesis of magnetic and semiconducting nanowires. Science 2004, 303, 213–217.CrossRefGoogle Scholar
  12. [12]
    Lee, S. W.; Mao, C. B.; Flynn, C. E.; Belcher, A. M. Ordering of quantum dots using genetically engineered viruses. Science 2002, 296, 892–895.CrossRefGoogle Scholar
  13. [13]
    Niu, Z. W.; Bruckman, M.; Kotakadi, V. S.; He, J.; Emrick, T.; Russell, T. P.; Yang, L.; Wang, Q. Study and characterization of tobacco mosaic virus head-to-tail assembly assisted by aniline polymerization. Chem. Commun. 2006, 3019–3021.Google Scholar
  14. [14]
    Niu, Z. W.; Bruckman, M. A.; Li, S. Q.; Lee, L. A.; Lee, B.; Pingali, S. V.; Thiyagarajan, P.; Wang, Q. Assembly of tobacco mosaic virus into fibrous and macroscopic bundled arrays mediated by surface aniline polymerization. Langmuir 2007, 23, 6719–6724.CrossRefGoogle Scholar
  15. [15]
    Tseng, R. J.; Baker, C. O.; Shedd, B.; Huang, J. X.; Kaner, R. B.; Ouyang, J. Y.; Yang, Y. Charge transfer effect in the polyaniline-gold nanoparticle memory system. Appl. Phys. Lett. 2007, 90, 053101.CrossRefGoogle Scholar
  16. [16]
    Fonoberov, V. A.; Balandin, A. A. Phonon confinement effects in hybrid virus-inorganic nanotubes for nanoelectronic applications. Nano Lett. 2005, 5, 1920–1923.CrossRefGoogle Scholar
  17. [17]
    Royston, E.; Lee, S. Y.; Culver, J. N.; Harris, M. T. Characterization of silica-coated tobacco mosaic virus. J. Colloid Interface Sci. 2006, 298, 706–712.CrossRefGoogle Scholar
  18. [18]
    Bruckman, M. A.; Kaur, G.; Lee, L. A.; Xie, F.; Sepulveda, J.; Breitenkamp, R.; Zhang, X. F.; Joralemon, M.; Russell, T. P.; Emrick, T.; Wang, Q. Surface modification of tobacco mosaic virus with “click” chemistry. Chembiochem. 2008, 9, 519–523.CrossRefGoogle Scholar
  19. [19]
    Wang, Q.; Lin, T. W.; Tang, L.; Johnson, J. E.; Finn, M. G. Icosahedral virus particles as addressable nanoscale building blocks. Angew. Chem., Int. Ed. 2002, 41, 459–462.CrossRefGoogle Scholar
  20. [20]
    Wang, Q.; Lin, T. W.; Johnson, J. E.; Finn, M. G. Natural supramolecular building blocks: Cysteine-added mutants of cowpea mosaic virus. Chem. Biol. 2002, 9, 813–819.CrossRefGoogle Scholar
  21. [21]
    Wang, Q.; Chan, T. R.; Hilgraf, R.; Fokin, V. V.; Sharpless, K. B.; Finn, M. G. Bioconjugation by copper(I)-catalyzed azide-alkyne [3+2] cycloaddition. J. Am. Chem. Soc. 2003, 125, 3192–3193.CrossRefGoogle Scholar
  22. [22]
    Schlick, T. L.; Ding, Z. B.; Kovacs, E. W.; Francis, M. B. Dual-surface modification of the tobacco mosaic virus. J. Am. Chem. Soc. 2005, 127, 3718–3823.CrossRefGoogle Scholar
  23. [23]
    Chiang, C. Y.; Mello, C. M.; Gu, J. J.; Silva, E. C. C. M.; van Vliet, K. J.; Belcher, A. M. Weaving genetically engineered functionality into mechanically robust virus fibers. Adv. Mater. 2007, 19, 826–832.CrossRefGoogle Scholar
  24. [24]
    Rezai, T.; Bock, J. E.; Zhou, M. V.; Kalyanaraman, C.; Lokey, R. S.; Jacobson, M. P. Conformational flexibility, internal hydrogen bonding, and passive membrane permeability: Successful in silico prediction of the relative permeabilities of cyclic peptides. J. Am. Chem. Soc. 2006, 128, 14073–14080.CrossRefGoogle Scholar
  25. [25]
    MacDiarmid, A. G. Synthetic metals: A novel role for organic polymers. Syn. Met. 2001, 125, 11–22.CrossRefGoogle Scholar
  26. [26]
    Huang, J. X.; Kaner, R. B. The intrinsic nanofibrillar morphology of polyaniline. Chem. Commun. 2006, 367–376.Google Scholar
  27. [27]
    Liu, W.; Cholli, A. L.; Nagarajan, R.; Kumar, J.; Tripathy, S.; Bruno, F. F.; Samuelson, L. The role of template in the enzymatic synthesis of conducting polyaniline. J. Am. Chem. Soc. 1999, 121, 11345–11355.CrossRefGoogle Scholar
  28. [28]
    Liu, W.; Kumar, J.; Tripathy, S.; Senecal, K. J.; Samuelson, L. Enzymatically synthesized conducting polyaniline. J. Am. Chem. Soc. 1999, 121, 71–78.CrossRefGoogle Scholar
  29. [29]
    Zhang, D. H.; Wang, Y. Y. Synthesis and applications of one-dimensional nano-structured polyaniline: An overview. Mater. Sci. Eng. B 2006, 134, 9–19.CrossRefGoogle Scholar
  30. [30]
    Zhang, X.; Goux, W. J.; Manohar, S. K. Synthesis of polyaniline nanofibers by “nanofiber seeding”. J. Am. Chem. Soc. 2004, 126, 4502–4503.CrossRefGoogle Scholar
  31. [31]
    Chiou, N. R.; Epstein, A. J. Polyaniline nanofibers prepared by dilute polymerization. Adv. Mater. 2005, 17, 1679–1683.CrossRefGoogle Scholar
  32. [32]
    Sun, X.; Hagner, M. Novel poly(acrylic acid)-mediated formation of composited, poly(3,4-ethylenedioxythiophene)-based conducting polymer nanowires. Macromolecules 2007, 40, 8537–8539.CrossRefGoogle Scholar
  33. [33]
    Tseng, R. J.; Huang, J. X.; Ouyang, J. Y.; Kaner, R. B.; Yang, Y. Polyaniline nanofiber/gold nanoparticle nonvolatile memory. Nano Lett. 2005, 5, 1077–1080.CrossRefGoogle Scholar
  34. [34]
    Huang, J. X.; Kaner, R. B. A general chemical route to polyaniline nanofibers. J. Am. Chem. Soc. 2004, 126, 851–855.CrossRefGoogle Scholar
  35. [35]
    Lee, S. W.; Belcher, A. M. Virus-based fabrication of micro-and nanofibers using electrospinning. Nano Lett. 2004, 4, 387–390.CrossRefGoogle Scholar
  36. [36]
    Niu, Z.; Liu, J.; Lee, L. A.; Bruckman, M. A.; Zhao, D.; Koley, G.; Wang, Q. Biological templated synthesis of water-soluble conductive polymeric nanowires. Nano Lett. 2007, 7, 3729–3733.CrossRefGoogle Scholar
  37. [37]
    Thiyagarajan, M.; Samuelson, L. A.; Kumar, J.; Cholli, A. L. Helical conformational specificity of enzymatically synthesized water-soluble conducting polyaniline nanocomposites. J. Am. Chem. Soc. 2003, 125, 11502–11503.CrossRefGoogle Scholar
  38. [38]
    Yoo, P. J.; Nam, K. T.; Qi, J. F.; Lee, S. K.; Park, J.; Belcher, A. M.; Hammond, P. T. Spontaneous assembly of viruses on multilayered polymer surfaces. Nat. Mater. 2006, 5, 234–240.CrossRefGoogle Scholar
  39. [39]
    Prasad, T.; Turner, M.; Falkner, J.; Mittlernan, D.; Johnson, J.; Lin, T. W.; Colvin, V. Nanostructured virus crystals for X-ray optics. IEEE T. Nanotechnol. 2006, 5, 93–96.CrossRefGoogle Scholar
  40. [40]
    Lin, Y.; Su, Z.; Niu, Z.; Li, S.; Kaur, G.; Lee, L. A.; Wang, Q. Layer-by-layer assembly of viral capsid for cell adhesion. Acta Biomater. 2008, 4, 838–843.CrossRefGoogle Scholar
  41. [41]
    Maguire, J. F.; McTague, J. P.; Rondelez, F. Rotational diffusion of sterically interacting rodlike macromolecules. Phys. Rev. Lett. 1980, 45, 1891–1894.CrossRefGoogle Scholar

Copyright information

© Tsinghua Press and Springer-Verlag GmbH 2008

Authors and Affiliations

  1. 1.Department of Chemistry and Biochemistry and NanocenterUniversity of South CarolinaColumbiaUSA
  2. 2.Bioscience and Technology Team, US Army Natick Soldier ResearchDevelopment & Engineering CenterNatickUSA

Personalised recommendations