Nano Research

, Volume 1, Issue 3, pp 221–228 | Cite as

Growth and optical applications of centimeter-long ZnO nanocombs

  • Ke Yu
  • Qiuxiang Zhang
  • Jin Wu
  • Lijun Li
  • Yu’e Xu
  • Shaohua Huang
  • Ziqiang Zhu
Open Access
Research Article


Ultralong ZnO nanocombs have been synthesized on silicon substrates with a high growth rate of ∼7 μm/s using a simple “thermal evaporation and condensation” method promoted by Cu catalysts. The lengths of the ZnO nanocombs range from several millimeters to more than one centimeter and the diameters of the branches are about 300 nm. The growth mechanism of the ultralong nanocombs and the catalytic behavior of the copper are discussed. The nanocombs were readily separated and their applications as optical polarizer and grating were investigated. The results show that the ultralong ZnO nanocombs can act as effective optical components in miniaturized integrated optics systems.


Zinc oxide nanocombs thermal evaporation polarizer grating 


  1. [1]
    Wang, Z. L.; Kong, X. Y.; Ding, Y.; Gao, P.; Hughes, W. L.; Yang, R.; Zhang, Y. Semiconducting and piezoelectric oxide nanostructures induced by polar surfaces. Adv. Funct. Mater. 2004, 14, 943–956.CrossRefGoogle Scholar
  2. [2]
    Wang, Z. L.; Kong, X. Y.; Zuo, J. M. Induced growth of asymmetric nanocantilever arrays on polar surfaces. Phys. Rev. Lett. 2003, 91, 185502.CrossRefGoogle Scholar
  3. [3]
    Yan, H.; He, R.; Johnson, J.; Law, M.; Saykally, R. J.; Yang, P. Dendritic nanowire ultraviolet laser array. J. Am. Chem. Soc. 2003, 125, 4728–4729.CrossRefGoogle Scholar
  4. [4]
    Pan, Z. W.; Mahurin, S. M.; Dai, S.; Lowndes, D. H. Nanowire array gratings with ZnO combs. Nano Lett. 2005, 5, 723–727.CrossRefGoogle Scholar
  5. [5]
    Zhu, H. W.; Xu, C. L.; Wu, D. H.; Wei, B. Q.; Vajtai, R. P.; Ajayan, M. Direct synthesis of long single-walled carbon nanotube strands. Science 2002, 296, 884–886.CrossRefGoogle Scholar
  6. [6]
    Huang, S.; Maynor, B.; Cai, X. Y.; Liu, J. Ultralong, well-aligned single-walled carbon nanotube architectures on surfaces. Adv. Mater. 2003, 15, 1651–1655.CrossRefGoogle Scholar
  7. [7]
    Wang, W. Z.; Zeng, B. Q.; Yang, J.; Poudel, B.; Huang, J. Y.; Naughton, M. J.; Ren, Z. F. Aligned ultralong ZnO nanobelts and their enhanced field emission. Adv. Mater. 2006, 18, 3275–3278.CrossRefGoogle Scholar
  8. [8]
    Lao, C. S.; Gao, P. X.; Yang, R. S.; Zhang, Y.; Dai, Y.; Wang, Z. L. Formation of double-side teethed nanocombs of ZnO and self-catalysis of Zn-terminated polar surface. Chem. Phys. Lett. 2005, 417, 359 363.Google Scholar
  9. [9]
    Shen, G. Z.; Bando, Y.; Chen, D.; Liu, B. D.; Zhi, C. Y.; Golberg, D. Morphology-controlled synthesis of ZnO nanostructures by a simple round-to-round metal vapor deposition route. J. Phys. Chem. B 2006, 110, 3973–3978.CrossRefGoogle Scholar
  10. [10]
    Lim, Y. S.; Park, J. W.; Hong, S. T.; Kim, J. Carbothermal synthesis of ZnO nanocomb structure. Mater. Sci. Eng. B 2006, 129, 100–103.CrossRefGoogle Scholar
  11. [11]
    Yang, W. Y.; Xie, Z. P.; Miao, H. Z.; Zhang, L. G.; An, L. N. Coalescence of nanobranches: A new growth mechanism for single crystal nanobelts. J. Phys. Chem. B 2006, 110, 3969–3972.CrossRefGoogle Scholar
  12. [12]
    Li, S. Y.; Lee, C. Y.; Tseng, T. Y. Copper-catalyzed ZnO nanowires on silicon (100) grown by vapor-liquid-solid process. J. Cryst. Growth 2003, 247, 357–362.CrossRefGoogle Scholar
  13. [13]
    Zhou, W. W.; Han, Z. Y.; Wang, J. Y.; Zhang, Y.; Jin, Z.; Sun, X.; Zhang, Y. W.; Yan, C. H.; Li, Y. Copper catalyzing growth of single-walled carbon nanotubes on substrates. Nano Lett. 2006, 6, 2987–2990.CrossRefGoogle Scholar
  14. [14]
    Onuferko J. H.; Woodruff, D. P. LEED structural study of the adsorption of oxygen on Cu {100} surfaces. Surf. Sci. 1980, 95, 555–570.CrossRefGoogle Scholar
  15. [15]
    Richter, H.; Gerhardt, U. Adsorption sites of oxygen on Cu (001) and Ni (001) determined from the shape of the low-energy electron-diffraction spots. Phys. Rev. Lett. 1983, 51, 1570–1572.CrossRefGoogle Scholar
  16. [16]
    Parkin, S. R.; Zeng, H. C.; Zhou, M. Y.; Mitchell, K. A. R. Low-energy electron-diffraction crystallographic determination for the Cu(110)2×1−O surface structure. Phys. Rev. B 1990, 41, 5432–5435.CrossRefGoogle Scholar

Copyright information

© Tsinghua Press and Springer-Verlag GmbH 2008

Authors and Affiliations

  • Ke Yu
    • 1
  • Qiuxiang Zhang
    • 2
  • Jin Wu
    • 1
  • Lijun Li
    • 1
  • Yu’e Xu
    • 1
  • Shaohua Huang
    • 3
  • Ziqiang Zhu
    • 1
  1. 1.Key Laboratory for Polar Materials and Devices of Ministry of Education and Department of Electronic EngineeringEast China Normal UniversityShanghaiChina
  2. 2.Department of Electronic EngineeringShanghai Jianqiao CollegeShanghaiChina
  3. 3.Surface Physics Laboratory, Department of PhysicsFudan UniversityShanghaiChina

Personalised recommendations