Nano Research

, Volume 1, Issue 3, pp 203–212 | Cite as

Nano-graphene oxide for cellular imaging and drug delivery

  • Xiaoming Sun
  • Zhuang Liu
  • Kevin Welsher
  • Joshua Tucker Robinson
  • Andrew Goodwin
  • Sasa Zaric
  • Hongjie Dai
Open Access
Research Article

Abstract

Two-dimensional graphene offers interesting electronic, thermal, and mechanical properties that are currently being explored for advanced electronics, membranes, and composites. Here we synthesize and explore the biological applications of nano-graphene oxide (NGO), i.e., single-layer graphene oxide sheets down to a few nanometers in lateral width. We develop functionalization chemistry in order to impart solubility and compatibility of NGO in biological environments. We obtain size separated pegylated NGO sheets that are soluble in buffers and serum without agglomeration. The NGO sheets are found to be photoluminescent in the visible and infrared regions. The intrinsic photoluminescence (PL) of NGO is used for live cell imaging in the near-infrared (NIR) with little background. We found that simple physisorption via π-stacking can be used for loading doxorubicin, a widely used cancer drug onto NGO functionalized with antibody for selective killing of cancer cells in vitro. Owing to its small size, intrinsic optical properties, large specific surface area, low cost, and useful non-covalent interactions with aromatic drug molecules, NGO is a promising new material for biological and medical applications.

Keywords

Graphene oxide pegylation size separation cellular imaging drug delivery 

Supplementary material

12274_2008_8021_MOESM1_ESM.pdf (500 kb)
Supplementary material, approximately 499 KB.

References

  1. [1]
    Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.CrossRefGoogle Scholar
  2. [2]
    Kopelevich, Y.; Esquinazi, P. Graphene physics in graphite. Adv. Mater. 2007, 19, 4559–4563.CrossRefGoogle Scholar
  3. [3]
    Li, X.; Wang, X.; Zhang, L.; Lee, S.; Dai, H. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 2008, 319, 1229–1232.CrossRefGoogle Scholar
  4. [4]
    Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Graphene-based composite materials. Nature 2006, 442, 282–286.CrossRefGoogle Scholar
  5. [5]
    Dikin, D. A.; Stankovich, S.; Zimney, E. J.; Piner, R. D.; Dommett, G. H. B.; Evmenenko, G.; Nguyen, S. T.; Ruoff, R. S. Preparation and characterization of graphene oxide paper. Nature 2007, 448, 457–460.CrossRefGoogle Scholar
  6. [6]
    Li, D.; Müller, M. B.; Gilge, S.; Kaner, R. B.; Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechol. 2008, 3, 101–105.CrossRefGoogle Scholar
  7. [7]
    Hummers, W. S.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339.CrossRefGoogle Scholar
  8. [8]
    Cai, D. Y.; Song, M. Preparation of fully exfoliated graphite oxide nanoplatelets in organic solvents. J. Mater. Chem. 2007, 17, 3678–3680.CrossRefGoogle Scholar
  9. [9]
    Hontoria-Lucas, C.; Lopez-Peinado, A. J.; Lopez-Gonzalez, J. D. D.; Rojas-Cervantes, M. L.; Martin-Aranda, R. M. Study of oxygen-containing groups in a series of graphite oxides: Physical and chemical characterization. Carbon 1995, 33, 1585–1592.CrossRefGoogle Scholar
  10. [10]
    Szabo, T.; Berkesi, O.; Dekany, I. DRIFT study of deuterium-exchanged graphite oxide. Carbon 2005, 43, 3186–3189.CrossRefGoogle Scholar
  11. [11]
    Hermanson, G. T. Bioconjugate Techniques; Academic Press: San Diego, 1996; Ch2.Google Scholar
  12. [12]
    Stankovich, S.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon 2006, 44, 3342–3347.CrossRefGoogle Scholar
  13. [13]
    Reed, B. W.; Sarikaya, M. Electronic properties of carbon nanotubes by transmission electron energy-loss spectroscopy. Phys. Rev. B 2001, 64, 195404.CrossRefGoogle Scholar
  14. [14]
    Attal, S.; Thiruvengadathan, R.; Regev, O. Determination of the concentration of single-walled carbon nanotubes in aqueous dispersions using UV-visible absorption spectroscopy. Anal. Chem. 2006, 78, 8098–8104.CrossRefGoogle Scholar
  15. [15]
    Cherukuri, P.; Bachilo, S. M.; Litovsky, S. H.; Weisman, R. B. Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells. J. Am. Chem. Soc. 2004, 126, 15638–15639.CrossRefGoogle Scholar
  16. [16]
    Welsher, K.; Liu, Z.; Daranciang, D.; Dai, H. Selective probing and imaging of cells with single walled carbon nanotubes as near-infrared fluorescent molecules. Nano Lett. 2008, 8, 586–590.CrossRefGoogle Scholar
  17. [17]
    Price, C. A. Centrifugation in Density Gradients; Academic Press: New York, 1982; Ch. 5.Google Scholar
  18. [18]
    Sun, X. M.; Zaric, S.; Daranciang, D.; Welsher, K.; Lu, Y. R.; Li, X. L.; Dai, H. J. Optical properties of ultrashort semiconducting single-walled carbon nanotube capsules down to sub-10 nm. J. Am. Chem. Soc. 2008, 130, 6551–6555.CrossRefGoogle Scholar
  19. [19]
    Lerf, A.; He, H. Y.; Forster, M.; Klinowski, J. Structure of graphite oxide revisited. J. Phys. Chem. B 1998, 102, 4477–4482.CrossRefGoogle Scholar
  20. [20]
    Sun, Y. P.; Zhou, B.; Lin, Y.; Wang, W.; Fernando, K. A. S.; Pathak, P.; Meziani, M. J.; Harruff, B. A.; Wang, X.; Wang, H. F.; Luo, P. J. G.; Yang, H.; Kose, M. E.; Chen, B. L.; Veca, L. M.; Xie, S. Y. Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 2006, 128, 7756–7757.CrossRefGoogle Scholar
  21. [21]
    Liu, H. P.; Ye, T.; Mao, C. D. Fluorescent carbon nanoparticles derived from candle soot. Angew. Chem. Int. Ed. 2007, 46, 6473–6475.CrossRefGoogle Scholar
  22. [22]
    Kam, N. W. S.; Liu, Z. A.; Dai, H. J. Carbon nanotubes as intracellular transporters for proteins and DNA: An investigation of the uptake mechanism and pathway. Angew. Chem. Int. Ed. 2006, 45, 577–581.CrossRefGoogle Scholar
  23. [23]
    Aubin, J. E. Autofluorescence of viable cultured mammalian cells. J. Histochem. Cytochem. 1978, 27, 36–43.Google Scholar
  24. [24]
    Tsyboulski, D. A.; Rocha, J. D. R.; Bachilo, S. M.; Cognet, L.; Weisman, R. B. Structure-dependent fluorescence efficiencies of individual single-walled carbon nanotubes. Nano Lett. 2007, 7, 3080–3085.CrossRefGoogle Scholar
  25. [25]
    Carlson, L. J.; Maccagnano, S. E.; Zheng, M.; Silcox, J.; Krauss, T. D. Fluorescence efficiency of individual carbon nanotubes. Nano Lett. 2007, 7, 3698–3703.CrossRefGoogle Scholar
  26. [26]
    Crochet, J.; Clemens, M.; Hertel, T. Quantum yield heterogeneities of aqueous single-wall carbon nanotube suspensions. J. Am. Chem. Soc. 2007, 129, 8058–8059.CrossRefGoogle Scholar
  27. [27]
    Liu, Z.; Sun, X. M.; Nakayama-Ratchford, N.; Dai, H. J. Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ACS Nano 2007, 1, 50–56.CrossRefGoogle Scholar

Copyright information

© Tsinghua Press and Springer-Verlag GmbH 2008

Authors and Affiliations

  • Xiaoming Sun
    • 1
  • Zhuang Liu
    • 1
  • Kevin Welsher
    • 1
  • Joshua Tucker Robinson
    • 1
  • Andrew Goodwin
    • 1
  • Sasa Zaric
    • 1
  • Hongjie Dai
    • 1
  1. 1.Department of Chemistry and Laboratory for Advanced MaterialsStanford UniversityStanfordUSA

Personalised recommendations