Nano Research

, Volume 1, Issue 2, pp 116–122 | Cite as

Controlled nanocutting of graphene

  • Lijie Ci
  • Zhiping Xu
  • Lili Wang
  • Wei Gao
  • Feng Ding
  • Kevin F. Kelly
  • Boris I. Yakobson
  • Pulickel M. Ajayan
Open Access
Research Article


Rapid progress in graphene-based applications is calling for new processing techniques for creating graphene components with different shapes, sizes, and edge structures. Here we report a controlled cutting process for graphene sheets, using nickel nanoparticles as a knife that cuts with nanoscale precision. The cutting proceeds via catalytic hydrogenation of the graphene lattice, and can generate graphene pieces with specific zigzag or armchair edges. The size of the nanoparticle dictates the edge structure that is produced during the cutting. The cutting occurs along straight lines and along symmetry lines, defined by angles of 60° or 120°, and is deflected at free edges or defects, allowing practical control of graphene nano-engineering.


Graphene nano-engineering electronics catalytic hydrogenation 

Supplementary material (1 mb)
ESM 1MOV 1050 kb
12274_2008_8020_MOESM2_ESM.pdf (528 kb)
ESM 2Supplementary Material (PDF 529 kb)


  1. [1]
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.CrossRefGoogle Scholar
  2. [2]
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D., Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov. A. A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200.CrossRefGoogle Scholar
  3. [3]
    Zhang, Y.; Tan, J. W.; Stormer, H. L.; Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 2005, 438, 201–204.CrossRefGoogle Scholar
  4. [4]
    Morozov, S. V.; Novoselov, K. S.; Katsnelson, M. I.; Schedin, F.; Ponomarenko, L. A.; Jiang, D.; Geim, A. K. Strong suppression of weak localization in graphene. Phys. Rev. Lett. 2006, 97, 016801.Google Scholar
  5. [5]
    McCann, E.; Kechedzhi, K.; Fal’ko, V. I.; Suzuura, H.; Ando, T.; Altshuler, B. L. Weak-localisation magnetoresistance and valley symmetry in graphene. Phys. Rev. Lett. 2006, 97, 146805.Google Scholar
  6. [6]
    Van Noorden, R. Moving towards a graphene world. Nature 2006, 442, 228–229.CrossRefGoogle Scholar
  7. [7]
    Kobayashi, Y.; Fukui, K.; Enoki, T.; Kusakabe, K.; Kaburagi, Y. Observation of zigzag and armchair edges of graphite using scanning tunneling microscopy and spectroscopy. Phys. Rev. B 2005, 71, 193406.Google Scholar
  8. [8]
    Son, Y.; Cohen, M. L.; Louie, S. G. Half-metallic graphene nanoribbons. Nature 2006, 444, 347–349.CrossRefGoogle Scholar
  9. [9]
    Son, Y.; Cohen, M. L.; Louie, S. G. Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 2006, 97, 216803.Google Scholar
  10. [10]
    Wang, W. L.; Meng, S.; Kaxiras, E. Graphene nanoflakes with large spin. Nano Lett. 2008, 8, 241–245.CrossRefGoogle Scholar
  11. [11]
    Fernández-Rossier, J.; Palacios, J. J. Magnetism in graphene nanoislands. Phys. Rev. Lett. 2007, 99, 177204.Google Scholar
  12. [12]
    Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652–655.CrossRefGoogle Scholar
  13. [13]
    Li, X.; Wang, X.; Zhang, L.; Lee, S.; Dai, H. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 2008, 319, 1229–1232.CrossRefGoogle Scholar
  14. [14]
    Tomita A.; Tamai, Y. An optical microscopic study on the catalytic hydrogenation of graphite. J. Phys. Chem. 1974, 78, 2254–2258.CrossRefGoogle Scholar
  15. [15]
    Keep, C. W.; Terry, S.; Wells, M. Studies of the nickelcatalyzed hydrogenation of graphite. J. Catal. 1980, 66, 451–462.CrossRefGoogle Scholar
  16. [16]
    Baker, R. T. K.; Sherwood, R. D.; Derouane, E. G. Further studies of the nickel/graphite-hydrogen reaction. J. Catal. 1982, 75, 382–395.CrossRefGoogle Scholar
  17. [17]
    Goethel, P. J.; Yang, R. T. Mechanism of graphite hydrogenation catalyzed by nickel. J. Catal. 1987, 108, 356–363.CrossRefGoogle Scholar
  18. [18]
    Datta, S. S.; Strachan, D. R.; Khamis, S. M.; Johnson, A. T. C. Crystallographic etching of few-layer graphene. Nano Lett. 2008, 8, 1912–1915.CrossRefGoogle Scholar
  19. [19]
    Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.CrossRefGoogle Scholar
  20. [20]
    Helveg, S.; López-Cartes, C.; Sehested, J.; Hansen, P. L.; Clausen, B. S.; Rostrup-Nielsen, J. R.; Abild-Pedersen F.; Nørskov, J. K. Atomic-scale imaging of carbon nanofibre growth. Nature 2004, 427, 426–429.CrossRefGoogle Scholar
  21. [21]
    Ding, F.; Larsson, P.; Larsson, J. A.; Ahuja, R.; Duan, H.; Rosen A.; Bolton, K. The importance of strong carbonmetal adhesion for catalytic nucleation of single-walled carbon nanotubes. Nano Lett. 2008, 8, 463–468.CrossRefGoogle Scholar
  22. [22]
    Chang, H.; Bard, A. J. Scanning tunneling microscopy studies of carbon-oxygen reactions on highly oriented pyrolytic graphite. J. Am. Chem. Soc. 1991, 113, 5588–5596.CrossRefGoogle Scholar
  23. [23]
    Berger, C.; Song, Z.; Li, T.; Li, X.; Ogbazghi, A. Y.; Feng, R.; Dai, Z.; Marchenkov, A. N.; Conrad, E. H.; First, P. N.; de Heer, W. A. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 2004, 108, 19912–19916.CrossRefGoogle Scholar

Copyright information

© Tsinghua Press and Springer-Verlag GmbH 2008

Authors and Affiliations

  • Lijie Ci
    • 1
  • Zhiping Xu
    • 1
  • Lili Wang
    • 2
  • Wei Gao
    • 1
  • Feng Ding
    • 1
  • Kevin F. Kelly
    • 2
  • Boris I. Yakobson
    • 1
  • Pulickel M. Ajayan
    • 1
  1. 1.Department of Mechanical Engineering & Materials ScienceRice UniversityHoustonUSA
  2. 2.Department of Electrical and Computer EngineeringRice UniversityHoustonUSA

Personalised recommendations