Nano Research

, Volume 1, Issue 2, pp 138–144 | Cite as

Shape control of doped semiconductor nanocrystals (d-dots)

  • Ranjani Viswanatha
  • David M. Battaglia
  • Mark E. Curtis
  • Tetsuya D. Mishima
  • Matthew B. Johnson
  • Xiaogang Peng
Open Access
Research Article

Abstract

Formation of Mn2+-doped ZnSe quantum dots (Mn:ZnSe d-dots) with both branched and nearly spherical shapes has been studied. Structure analysis indicates that the Mn2+ dopants were localized in the core of a branched nanocrystal. The growth of branched d-dots, rather than spherical ones, was achieved by simply varying the concentration of two organic additives, fatty acids, and fatty amines. The photoluminescence properties of the branched nanocrystals were explored and compared with those of the nearly spherical particles.

Keywords

Doped quantum dot (d-dot) shape control photoluminescence 

Supplementary material

12274_2008_8016_MOESM1_ESM.pdf (935 kb)
Supplementary material, approximately 936 KB.

References

  1. [1]
    Bhargava, R. N.; Gallagher, D.; Hong, X.; Nurmikko, A. Optical-properties of manganese-doped nanocrystals of ZnS. Phys. Rev. Lett. 1994, 72, 416–419.CrossRefGoogle Scholar
  2. [2]
    Pradhan, N.; Goorskey, D.; Thessing, J.; Peng, X. An alternative of CdSe nanocrystal emitters: Pure and tunable impurity emissions in ZnSe nanocrystals. J. Am. Chem. Soc. 2005, 127, 17586–17587.CrossRefGoogle Scholar
  3. [3]
    Kim, J. H.; Holloway, P.H. Near-infrared-electroluminescent light-emitting planar optical sources based on gallium nitride doped with rare earths. Adv. Mater. 2005, 17, 91–96.CrossRefGoogle Scholar
  4. [4]
    Mikulec, F. V.; Kuno, M.; Bennati, M.; Hall, D. A.; Griffin, R. G.; Bawendi, M. G. Organometallic synthesis and spectroscopic characterization of manganese-doped CdSe nanocrystals. J. Am. Chem. Soc. 2000, 122, 2532–2540.CrossRefGoogle Scholar
  5. [5]
    Hanif, K. M.; Meulenberg, R. W.; Strouse, G. F. Magnetic ordering in doped Cd1−xCoxSe diluted magnetic quantum dots. J. Am. Chem. Soc. 2002, 124, 11495–11502.CrossRefGoogle Scholar
  6. [6]
    Radovanovic, P. V.; Gamelin, D. R. Electronic absorption spectroscopy of cobalt Ions in diluted magnetic semiconductor quantum dots: Demonstration of an isocrystalline core/shell synthetic method. J. Am. Chem. Soc. 2001, 123, 12207–12214.CrossRefGoogle Scholar
  7. [7]
    Sapra, S.; Sarma, D. D.; Sanvito, S.; Hill, N. A. Influence of quantum confinement on the electronic and magnetic properties of (Ga,Mn) as diluted magnetic semiconductor. Nano Lett. 2002, 2, 605–608.CrossRefGoogle Scholar
  8. [8]
    Yuhas, B. D.; Zitoun, D. O.; Pauzauskie, P. J.; He, R.; Yang, P. Transition-metal doped zinc oxide nanowires. Angew. Chem. Int. Ed. 2006, 45, 420–423.CrossRefGoogle Scholar
  9. [9]
    Yang, Y.; Chen, O.; Angerhofer, A.; Cao, Y. C. Radialposition-controlled doping in CdS/ZnS core/shell nanocrystals. J. Am. Chem. Soc. 2006, 128, 12428–12429.CrossRefGoogle Scholar
  10. [10]
    Pradhan, N.; Peng, X. Efficient and color-tunable Mn-doped ZnSe nanocrystal emitters: Control of optical performance via greener synthetic chemistry. J. Am. Chem. Soc. 2007, 129, 3339–3347.CrossRefGoogle Scholar
  11. [11]
    Viswanatha, R.; Chakraborty, S.; Basu, S.; Sarma, D. D. Blue-emitting copper-doped zinc oxide nanocrystals. J. Phys. Chem. B 2006, 110, 22310–22312.CrossRefGoogle Scholar
  12. [12]
    Nag, A.; Sapra, S.; Nagamani, C.; Sharma, A.; Pradhan, N.; Bhat, S. V.; Sarma, D. D. A study of Mn2+ doping in CdS nanocrystals. Chem. Mater. 2007, 19, 3252–3259.CrossRefGoogle Scholar
  13. [13]
    Peng, X. Mechanisms for the shape-control and shape-evolution of colloidal semiconductor nanocrystals. Adv. Mater. 2003, 15, 459–463.CrossRefGoogle Scholar
  14. [14]
    Peng, X.; Manna, U.; Yang, W.; Wickham, J.; Scher, E.; Kadavanich, A.; Allvisatos, A. P. Shape control of CdSe nanocrystals. Nature 2000, 404, 59–61.CrossRefGoogle Scholar
  15. [15]
    Manna, L.; Milliron, D. J.; Meisel, A.; Scher, E. C.; Alivisatos, A. P. Controlled growth of tetrapod-branched inorganic nanocrystals. Nat. Mater. 2003, 2, 382–385.CrossRefGoogle Scholar
  16. [16]
    Li, L. S.; Pradhan, N.; Wang, Y.; Peng, X. High quality ZnSe and ZnS nanocrystals formed by activating zinc carboxylate precursors. Nano Lett. 2004, 4, 2261–2264.CrossRefGoogle Scholar
  17. [17]
    Yu, W. W.; Peng, X. Formation of high-quality CdS and other II–VI semiconductor nanocrystals in noncoordinating solvents: Tunable reactivity of monomers. Angew. Chem. Int. Ed. 2002, 41, 2368–2371.CrossRefGoogle Scholar
  18. [18]
    Chen, Y.; Kim, M.; Lian, G.; Johnson, M. B.; Peng, X. Side reactions in controlling the quality, yield, and stability of high quality colloidal nanocrystals. J. Am. Chem. Soc. 2005, 127, 13331–13337.CrossRefGoogle Scholar
  19. [19]
    Pradhan, N.; Reifsnyder, D.; Xie, R.; Aldana, J.; Peng, X. Surface ligand dynamics in growth of nanocrystals. J. Am. Chem. Soc. 2007, 129, 9500–9509.CrossRefGoogle Scholar

Copyright information

© Tsinghua Press and Springer-Verlag GmbH 2008

Authors and Affiliations

  • Ranjani Viswanatha
    • 1
  • David M. Battaglia
    • 2
  • Mark E. Curtis
    • 3
    • 4
  • Tetsuya D. Mishima
    • 3
    • 4
  • Matthew B. Johnson
    • 3
    • 4
  • Xiaogang Peng
    • 1
    • 3
  1. 1.Department of Chemistry & BiochemistryUniversity of ArkansasFayettevilleUSA
  2. 2.NN-Labs LLCFayettevilleUSA
  3. 3.Joint MRSEC at the University of Oklahoma and the University of ArkansasFayettevilleUSA
  4. 4.Homer L. Dodge Department of Physics and AstronomyUniversity of OklahomaNormanUSA

Personalised recommendations