Nano Research

, Volume 1, Issue 2, pp 176–183

Simulation studies of a “nanogun” based on carbon nanotubes

Open Access
Research Article

Abstract

Quantum mechanical molecular dynamics simulations show that electrically neutral carbon nanotubes or fullerene balls housed in an outer carbon nanotube can be driven into motion by charging the outer tube uniformly. Positively and negatively charged outer tube are found to have quite different actions on the initially neutral nanotubes or fullerene balls. A positively charged tube can drive out the molecule inside it out at speeds over 1 km/s, just like a “nanogun”, while a negatively charged tube can drive the molecule into oscillation inside it and can absorb inwards a neutral molecule in the vicinity of its open end, like a “nanomanipulator”. The results demonstrate that changing the charge environment in specific ways may open the door to conceptually new nano/molecular electromechanical devices.

Keywords

Energy conversion carbon nanotube neutral molecule driving mechanisms 

References

  1. [1]
    Wang, X.; Song, J.; Liu, J.; Wang, Z. L. Direct-current nanogenerator driven by ultrasonic waves. Science 2007, 316, 102–105.CrossRefGoogle Scholar
  2. [2]
    de Jonge, N.; Lamy, Y.; Schoots, K.; Oosterkamp, T. H. High brightness electron beam from a multi-walled carbon nanotube. Nature 2002, 420, 393–395.CrossRefGoogle Scholar
  3. [3]
    Moseler, M.; Landman, U. Formation, stability, and breakup of nanojets. Science 2000, 289, 1165–1169.CrossRefGoogle Scholar
  4. [4]
    Fennimore, A. M.; Yuzvinsky, T. D.; Han, W. Q.; Fuhrer, M. S.; Cumings, J.; Zettl, A. Rotational actuators based on carbon nanotubes. Nature 2003, 424, 408–410.CrossRefGoogle Scholar
  5. [5]
    Baughman, R. H.; Cui, C.; Zakhidov, A. A.; Iqbal, Z.; Barisci, J. N.; Spinks, G. M.; Wallace, G. G.; Mazzoldi, A.; De Rossi, D.; Rinzler, A. G.; Jaschinski, O.; Roth, S.; Kertesz, M. Carbon nanotube actuators. Science 1999, 284, 1340–1344.CrossRefGoogle Scholar
  6. [6]
    Siwy, Z.; Fulinski, A. Fabrication of a synthetic nanopore ion pump. Phys. Rev. Lett. 2002, 89, 198103.Google Scholar
  7. [7]
    Léger, Y.; Besombes, L.; Fernández-Rossier, J.; Maingault, L.; Mariette, H. Electrical control of a single Mn atom in a quantum dot. Phys. Rev. Lett. 2006, 97, 107401.Google Scholar
  8. [8]
    Ahn, C. H. K.; Rabe, M.; Triscone, J.-M. Ferroelectricity at the nanoscale: Local polarization in oxide thin films and heterostructures. Science 2004, 303,488–491.CrossRefGoogle Scholar
  9. [9]
    Gong, X.; Li, J. Lu, H.; Wan, R.; Li, J.; Hu, J.; Fang, H. A charge-driven molecular water pump. Nat. Nanotechnol. 2007, 2, 709–712.CrossRefGoogle Scholar
  10. [10]
    Hinds, B. Molecular dynamics: A blueprint for a nanoscale pump. Nat. Nanotechnol. 2007, 2, 673–674.CrossRefGoogle Scholar
  11. [11]
    Yoshida, M.; Muneyuki, E.; Hisabori, T. ATP synthase — A marvellous rotary engine of the cell. Nat. Rev. Mol. Cell Bio. 2001, 2, 669–677.CrossRefGoogle Scholar
  12. [12]
    Soong, R. K.; Bachand, G. D.; Neves, H. P.; Olkhovets, A. G.; Craighead, H. G. Montemagno, C. D. Powering an inorganic nanodevice with a biomolecular motor. Science 2000, 290, 1555–1558.CrossRefGoogle Scholar
  13. [13]
    Ahern, C. A.; Horn, R. Stirring up controversy with a voltage sensor paddle. Trends Neurosci. 2004, 27, 303–307.CrossRefGoogle Scholar
  14. [14]
    Ishii, D.; Kinbara, K.; Ishida, Y.; Ishii, N.; Okochi, M.; Yohda, M.; Aida, T. Chaperonin-mediated stabilization and ATP-triggered release of semiconductor nanoparticles. Nature 2003, 423, 628–632.CrossRefGoogle Scholar
  15. [15]
    Sigworth, F. J. Structural biology: Life’s transistors. Nature 2003, 423, 21–22.CrossRefGoogle Scholar
  16. [16]
    Perozo, E.; Rees, D. C. Structure and mechanism in prokaryotic mechanosensitive channels. Curr. Opin. Struc. Biol. 2003, 13, 432–442.CrossRefGoogle Scholar
  17. [17]
    Service, R. F. Superstrong nanotubes show they are smart, too. Science 1998, 281, 940–942.CrossRefGoogle Scholar
  18. [18]
    Chen, R. J.; Bangsaruntip, S.; Drouvalakis, K. A.; Kam, N. W. S.; Shim, M.; Li, Y.; Kim, W.; Utz, P. J.; Dai, H. Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. P. Natl. Acad. Sci. USA 2003, 100, 4984–4989.CrossRefGoogle Scholar
  19. [19]
    Guo, W.; Guo, Y. Giant axial electrostrictive deformation in carbon nanotubes. Phys. Rev. Lett. 2003, 91, 115501.Google Scholar
  20. [20]
    Lee, J.; Kim, H.; Kahng, S.-J.; Kim, G.; Son, Y.-W.; Ihm, J.; Kato, H.; Wang, Z. W.; Okazaki, T.; Shinohara, H.; Kuk, Y. Bandgap modulation of carbon nanotubes by encapsulated metallofullerenes. Nature 2002, 415, 1005–1008.CrossRefGoogle Scholar
  21. [21]
    Kwon, Y. K.; Tománek, D. Iijima, S. “Bucky shuttle” memory device: Synthetic approach and molecular dynamics simulations. Phys. Rev. Lett. 1999, 82, 1470–1473.CrossRefGoogle Scholar
  22. [22]
    Cumings, J.; Zettl, A. Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes. Science 2000, 289, 602–604.CrossRefGoogle Scholar
  23. [23]
    Guo, W.; Guo, Y.; Gao, H.; Zheng, Q.; Zhong, W. Energy dissipation in gigahertz oscillators from multiwalled carbon nanotubes. Phys. Rev. Lett. 2003, 91, 125501.Google Scholar
  24. [24]
    Cummings, J.; Zettl, A. Localization and nonlinear resistance in telescopically extended nanotubes. Phys. Rev. Lett. 2004, 93, 086801.Google Scholar
  25. [25]
    Rydberg, H.; Dion, M.; Jacobson, N.; Schröder, E.; Hyldgaard, P.; Simak, S. I.; Langreth, D. C.; Lundqvist, B. I. Van der Waals density functional for layered structures. Phys. Rev. Lett. 2003, 91, 126402.Google Scholar
  26. [26]
    Stewart, J. J. P. Optimization of parameters for semiempirical methods I. Method. J. Comput. Chem. 1989, 10, 209–220.CrossRefGoogle Scholar
  27. [27]
    Stewart, J. J. P. Optimization of parameters for semiempirical methods II. applications. J. Comput. Chem. 1989, 10, 221–264.CrossRefGoogle Scholar
  28. [28]
    Dion, M.; Rydberg, H.; Schröder, E.; Langreth, D. C.; Lundqvist, B. I. Van der Waals density functional for general geometries. Phys. Rev. Lett. 2004, 92, 246401.Google Scholar
  29. [29]
    Poncharal, P.; Wang, Z. L.; Ugarte, D.; Heer, W. A. Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 1999, 283, 1513–1516.CrossRefGoogle Scholar
  30. [30]
    Keblinski, P.; Nayak, S. K.; Zapol, P.; Ajayan, P. M. Charge distribution and stability of charged carbon nanotubes. Phys. Rev. Lett. 2002, 89, 255503.Google Scholar
  31. [31]
    Wei, B. Q.; D’Arcy-Gall, J.; Ajayan, P. M.; Ramanath, G. Tailoring structure and electrical properties of carbon nanotubes using kilo-electron-volt ions. Appl. Phys. Lett. 2003, 83, 3851–3853.Google Scholar

Copyright information

© Tsinghua Press and Springer-Verlag GmbH 2008

Authors and Affiliations

  1. 1.Institute of Nano ScienceNanjing University of Aeronautics and AstronauticsNanjingChina

Personalised recommendations