Nano Research

, 1:22 | Cite as

In situ TEM measurements of the mechanical properties and behavior of WS2 nanotubes

  • Ming Sheng Wang
  • Ifat Kaplan-Ashiri
  • Xian Long Wei
  • Rita Rosentsveig
  • Hanoch Daniel Wagner
  • Reshef Tenne
  • Lian Mao Peng
Open Access
Research Article


The mechanical properties of individual WS2 nanotubes were investigated and directly related to their atomic structure details by in situ transmission electron microscope measurements. A brittle mode deformation was observed in bending tests of short (ca. 1 μm in length) multilayer nanotubes. This mode can be related to the atomic structure of their shells. In addition, longer nanotubes (6-7μm in length) were deformed in situ scanning electron microscope, but no plastic deformation was detected. A “sword-in-sheath” fracture mechanism was revealed in tensile loading of a nanotube, and the sliding of inner shells inside the outermost shell was imaged “on-line”. Furthermore, bending modulus of 217 GPa was obtained from measurements of the electric-fieldinduced resonance of these nanotubes.


Inorganic nanotubes nanomechanics TEM SEM 


  1. [1]
    Treacy, M. M. J.; Ebbesen, T. W.; Gibson, J. M. Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 1996, 381 (6584), 678–680.CrossRefGoogle Scholar
  2. [2]
    Lourie, O.; Cox, D. M.; Wagner, H. D. Buckling and collapse of embedded carbon nanotubes. Phys. Rev. Lett. 1998, 81 (8), 1638–1641.CrossRefGoogle Scholar
  3. [3]
    Demczyk, B. G.; Wang, Y. M.; Cumings, J.; Hetman, M.; Han, W.; Zettl, A.; Ritchie, R. O. Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes. Mat. Sci. Eng. a-Struct. 2002, 334 (1–2), 173–178.CrossRefGoogle Scholar
  4. [4]
    Troiani, H. E.; Miki-Yoshida, M.; Camacho-Bragado, G. A.; Marques, M. A. L.; Rubio, A.; Ascencio, J. A.; Jose-Yacaman, M. Direct observation of the mechanical properties of single-walled carbon nanotubes and their junctions at the atomic level. Nano Lett. 2003, 3 (6), 751–755.CrossRefGoogle Scholar
  5. [5]
    Huang, J. Y.; Chen, S.; Ren, Z. F.; Wang, Z. Q.; Wang, D. Z.; Vaziri, M.; Suo, Z.; Chen, G.; Dresselhaus, M. S. Kink formation and motion in carbon nanotubes at high temperatures. Phys. Rev. Lett. 2006, 97 (7), 075501.CrossRefGoogle Scholar
  6. [6]
    Huang, J. Y.; Chen, S.; Wang, Z. Q.; Kempa, K.; Wang, Y. M.; Jo, S. H.; Chen, G.; Dresselhaus, M. S.; Ren, Z. F. Superplastic carbon nanotubes—Conditions have been discovered that allow extensive deformation of rigid single-walled nanotubes. Nature 2006, 439 (7074), 281–281.CrossRefGoogle Scholar
  7. [7]
    Tenne, R.; Margulis, L.; Genut, M.; Hodes, G. Polyhedral and cylindrical structures of tungsten disulfide. Nature 1992, 360 (6403), 444–446.CrossRefGoogle Scholar
  8. [8]
    Rapoport, L.; Fleischer, N.; Tenne, R. Applications of WS2 (MoS2) inorganic nanotubes and fullerene-like nanoparticles for solid lubrication and for structural nanocomposites. J. Mater. Chem. 2005, 15 (18), 1782–1788.CrossRefGoogle Scholar
  9. [9]
    Kaplan-Ashiri, I.; Cohen, S. R.; Gartsman, K.; Rosentsveig, R.; Seifert, G.; Tenne, R. Mechanical behavior of individual WS2 nanotubes. J. Mater. Res. 2004, 19 (2), 454–459.CrossRefGoogle Scholar
  10. [10]
    Kaplan-Ashiri, I.; Cohen, S. R.; Gartsman, K.; Ivanovskaya, V.; Heine, T.; Seifert, G.; Wiesel, I.; Wagner, H. D.; Tenne, R. On the mechanical behavior of WS2 nanotubes under axial tension and compression. Proc. Natl. Acad. Sci. U.S.A. 2006, 103 (3), 523–528.CrossRefGoogle Scholar
  11. [11]
    Kaplan-Ashiri, I.; Cohen, S. R.; Apter, N.; Wang, Y. K.; Seifert, G.; Wagner, H. D.; Tenne, R. Microscopic investigation of shear in multiwalled nanotube deformation. J. Phys. Chem. C 2007, 111 (24), 8432–8436.CrossRefGoogle Scholar
  12. [12]
    Zhu, Y. Q.; Sekine, T.; Li, Y. H.; Fay, M. W.; Zhao, Y. M.; Poa, C. H. P.; Wang, W. X.; Roe, M. J.; Brown, P. D.; Fleischer, N.; Tenne, R. Shock-absorbing and failure mechanisms of WS2 and MoS2 nanoparticles with fullerene-like structures under shock wave pressure. J. Am. Chem. Soc. 2005, 127 (46), 16263–16272.CrossRefGoogle Scholar
  13. [13]
    Wang, M. S.; Peng, L. M.; Wang, J. Y.; Chen, Q. Shaping carbon nanotubes and the effects on their electrical and mechanical properties. Adv. Funct. Mater. 2006, 16 (11), 1462–1468.CrossRefGoogle Scholar
  14. [14]
    Wang, M. S.; Wang, J. Y.; Chen, Q.; Peng, L. M. Fabrication and electrical and mechanical properties of carbon nanotube interconnections. Adv. Funct. Mater. 2005, 15 (11), 1825–1831.CrossRefGoogle Scholar
  15. [15]
    Gao, R. P.; Wang, Z. L.; Bai, Z. G.; de Heer, W. A.; Dai, L. M.; Gao, M. Nanomechanics of individual carbon nanotubes from pyrolytically grown arrays. Phys. Rev. Lett. 2000, 85 (3), 622–625.CrossRefGoogle Scholar
  16. [16]
    Poncharal, P.; Wang, Z. L.; Ugarte, D.; de Heer, W. A. Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 1999, 283 (5407), 1513–1516.CrossRefGoogle Scholar
  17. [17]
    Yu, M. F.; Wagner, G. J.; Ruoff, R. S.; Dyer, M. J. Realization of parametric resonances in a nanowire mechanical system with nanomanipulation inside a scanning electron microscope. Phys. Rev. B 2002, 66 (7), 073406.CrossRefGoogle Scholar
  18. [18]
    Gaillard, J.; Skove, M.; Rao, A. M. Mechanical properties of chemical vapor deposition-grown multiwalled carbon nanotubes. Appl. Phys. Lett. 2005, 86 (23), 233109.CrossRefGoogle Scholar
  19. [19]
    Liu, K. H.; Wang, W. L.; Xu, Z.; Liao, L.; Bai, X. D.; Wang, E. G. In situ probing mechanical properties of individual tungsten oxide nanowires directly grown on tungsten tips inside transmission electron microscope. Appl. Phys. Lett. 2006, 89 (22), 221908CrossRefGoogle Scholar
  20. [20]
    Gere, J. M. Mechanics of Materials, 6th ed.; Brooks/Cole Publishing: Pacifie Grove, 2004; p. 940.Google Scholar
  21. [21]
    Yakobson, B. I.; Avouris, P. Mechanical properties of carbon nanotubes. Carbon Nanotubes—Topics in Applied Physics 2001, 80, 287–327.CrossRefGoogle Scholar
  22. [22]
    Arroyo, M.; Belytschko, T. Nonlinear mechanical response and rippling of thick multiwalled carbon nanotubes. Phys. Rev. Lett. 2003, 91 (21), 215505.CrossRefGoogle Scholar
  23. [23]
    Falvo, M. R.; Clary, G. J.; Taylor, R. M.; Chi, V.; Brooks, F. P.; Washburn, S.; Superfine, R. Bending and buckling of carbon nanotubes under large strain. Nature 1997, 389 (6651), 582–584.CrossRefGoogle Scholar
  24. [24]
    Iijima, S.; Brabec, C.; Maiti, A.; Bernholc, J. Structural flexibility of carbon nanotubes. J. Chem. Phys. 1996, 104(5), 2089–2092.CrossRefGoogle Scholar
  25. [25]
    Liu, J. Z.; Zheng, Q. S.; Jiang, Q. Effect of bending instabilities on the measurements of mechanical properties of multiwalled carbon nanotubes. Phys. Rev. B 2003, 67 (7), 075414.CrossRefGoogle Scholar
  26. [26]
    Golberg, D.; Costa, P. M. F. J.; Lourie, O.; Mitome, M.; Bai, X. D.; Kurashima, K.; Zhi, C. Y.; Tang, C. C.; Bando, Y. Direct force measurements and kinking under elastic deformation of individual multiwalled boron nitride nanotubes. Nano Lett. 2007, 7 (7), 2146–2151.CrossRefGoogle Scholar
  27. [27]
    Kuzumaki, T.; Kitakata, S.; Enomoto, K.; Yasuhara, T.; Ohtake, N.; Mitsuda, Y. Dynamic observation of the bending behavior of carbon nanotubes by nanoprobe manipulation in TEM. Carbon 2004, 42 (11), 2343–2345.CrossRefGoogle Scholar
  28. [28]
    Ding, W.; Calabri, L.; Kohlhaas, K. M.; Chen, X.; Dikin, D. A.; Ruoff, R. S. Modulus, fracture strength, and brittle vs. plastic response of the outer shell of arc-grown multi-walled carbon nanotubes. Exp. Mech. 2007, 47 (1), 25–36.CrossRefGoogle Scholar
  29. [29]
    Kuzumaki, T.; Hayashi, T.; Ichinose, H.; Miyazawa, K.; Ito, K.; Ishida, Y. In situ observed deformation of carbon nanotubes. Philos. Mag. 1998, 77 (6), 1461–1469.CrossRefGoogle Scholar
  30. [30]
    Lide, D. R. CRC Handbook of Chemistry and Physics; CRC Press: Cleveland, Ohio, 1977.Google Scholar
  31. [31]
    Joly-Pottuz, L.; Martin, J. M.; Dassenoy, F.; Belin, M.; Montagnac, G.; Reynard, B.; Fleischer, N. Pressure-induced exfoliation of inorganic fullerene-like WS2 particles in a Hertzian contact. J. Appl. Phys. 2006, 99 (2), 023524/1–023524/5.CrossRefGoogle Scholar
  32. [32]
    Yu, M. F.; Files, B. S.; Arepalli, S.; Ruoff, R. S. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 2000, 84 (24), 5552–5555.CrossRefGoogle Scholar
  33. [33]
    Yu, M. F.; Lourie, O.; Dyer, M. J.; Moloni, K.; Kelly, T. F.; Ruoff, R. S. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 2000, 287 (5453), 637–640.CrossRefGoogle Scholar
  34. [34]
    Yu, M. F.; Yakobson, B. I.; Ruoff, R. S. Controlled sliding and pullout of nested shells in individual multiwalled carbon nanotubes. J. Phys. Chem. B 2000, 104 (37), 8764–8767.CrossRefGoogle Scholar
  35. [35]
    Gibson, R. F.; Ayorinde, E. O.; Wen, Y. F. Vibrations of carbon nanotubes and their composites: A review. Compos. Sci. Technol. 2007, 67 (1), 1–28.CrossRefGoogle Scholar
  36. [36]
    Kaplan-Ashiri, I.; Tenne, R. Mechanical Properties of WS2 Nanotubes J. Clust. Sci. 2007, 18 (3), 549–563.CrossRefGoogle Scholar

Copyright information

© Tsinghua Press and Springer-Verlag GmbH 2008

Authors and Affiliations

  • Ming Sheng Wang
    • 1
  • Ifat Kaplan-Ashiri
    • 2
  • Xian Long Wei
    • 1
  • Rita Rosentsveig
    • 2
  • Hanoch Daniel Wagner
    • 2
  • Reshef Tenne
    • 2
  • Lian Mao Peng
    • 1
  1. 1.Key Laboratory on the Physics and Chemistry of Nanodevices and Department of ElectronicsPeking UniversityBeijingChina
  2. 2.Department of Materials and InterfacesWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations