Nano Research

, 1:63

Elasticity, strength and resilience: A comparative study on mechanical signatures of α-Helix, β-sheet and tropocollagen domains

Open Access
Research Article

Abstract

In biology, structural design and materials engineering is unified through formation of hierarchical features with atomic resolution, from nano to macro. Three molecular building blocks are particularly prevalent in all structural protein materials: alpha helices (AHs), beta-sheets (BSs) and tropocollagen (TC). In this article we present a comparative study of these three key building blocks by focusing on their mechanical signatures, based on results from full-atomistic simulation studies. We find that each of the basic structures is associated with a characteristic material behavior: AH protein domains provide resilience at large deformation through energy dissipation at low force levels, BS protein domains provide great strength under shear loading, and tropocollagen molecules provide large elasticity for deformation recovery. This suggests that AHs, BSs, and TC molecules have mutually exclusive mechanical signatures. We correlate each of these basic properties with the molecule’s structure and the associated fundamental rupture mechanisms. Our study may enable the use of abundant protein building blocks in nanoengineered materials, and may provide critical insight into basic biological mechanisms for bio-inspired nanotechnologies. The transfer towards the design of novel nanostructures could lead to new multifunctional and mechanically active, tunable, and changeable materials.

Keywords

Fracture biology hierarchical materials materiomics proteins self-assembly mechanical properties theory strength 

References

  1. [1]
    Alberts, B.; Bray, D.; Lewis, J.; Raff, M.; Robert, K.; Watson, J. D. Molecular Biology of the Cell; Taylor & Francis: New York, NY, 2002.Google Scholar
  2. [2]
    Buehler, M. J.; Keten, S.; Ackbarow, T. Theoretical and computational hierarchical nanomechanics of protein materials: Deformation and fracture. Prog. Mater. Sci., in press.Google Scholar
  3. [3]
    Fratzl, P.; Weinkamer, R. Nature’s hierarchical materials. Prog. Mater. Sci. 2007, 52: 1263–1334.CrossRefGoogle Scholar
  4. [4]
    Smith, B. L.; Schäffer, T. E.; Viani, M.; Thompson, J. B.; Frederick, N. A.; Kindt, J.; Belcher, A.; Stucky, G. D.; Morse, D. E.; Hansma, P. K. Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites. Nature 1999, 399(6738): 761–763.CrossRefGoogle Scholar
  5. [5]
    Hirth, J. P.; Lothe, J. Theory of Dislocations; Wiley-Interscience: New York, NY, 1982.Google Scholar
  6. [6]
    Herrmann, H.; Aebi, U. Intermediate filaments: Molecular structure, assembly mechanism, and integration into functionally distinct intracellular scaffolds. Ann. Rev. Biochem. 2004, 73: 749–789.CrossRefGoogle Scholar
  7. [7]
    Rowat, A. C. Lammerding, J.; Herrmann, H.; Aebi, U. Towards an integrated understanding of the structure and mechanics of the cell nucleus. Bioessays 2008, 30(3): 226–236.CrossRefGoogle Scholar
  8. [8]
    Kreplak, L.; Fudge, D. Biomechanical properties of intermediate filaments: From tissues to single filaments and back. Bioessays 2007, 29(1): 26–35.CrossRefGoogle Scholar
  9. [9]
    Du, N.; Liu, X. Y.; Narayanan, J.; Li, L.; Lim, M. L. M.; Li, D. Q. Design of superior spider silk: From nanostructure to mechanical properties. Biophys. J. 2006, 91(12): 4528–4535.CrossRefGoogle Scholar
  10. [10]
    Vollrath, F.; Porter, D. Spider silk as archetypal protein elastomer. Soft Matter. 2006, 2(5): 377–385.CrossRefGoogle Scholar
  11. [11]
    Termonia, Y. Molecular modeling of spider silk elasticity. Macromolecules 1994, 27(25): 7378–7381.CrossRefGoogle Scholar
  12. [12]
    Mostaert, A. S.; Higgins, M. J. Nanoscale mechanical characterisation of amyloid fibrils discovered in a natural adhesive. J. Biol. Phys. 2006, 32(5): 393–401.CrossRefGoogle Scholar
  13. [13]
    Smith, J. F.; Knowles, T. P. J.; Dobson, C. M.; MacPhee, C. E.; Welland, M. E. Characterization of the nanoscale properties of individual amyloid fibrils. P. Natl. Acad. Sci. U. S. A. 2006, 103(43): 15806–15811.CrossRefGoogle Scholar
  14. [14]
    Slotta, U.; Hess, S.; Spiess, k.; Stromer, T.; Serpell, L.; Scheibel, T. Spider silk and amyloid fibrils: A structural comparison. Macromol. Biosci. 2007, 7(2):183–188.CrossRefGoogle Scholar
  15. [15]
    Ricard-Blum, S.; Ruggiero, F.; van der Rest, M. The collagen superfarmily. Collagen. 2005, 35–84.Google Scholar
  16. [16]
    Gelse, K.; Poschl, E.; Aigner; T. Collagens structure, function, and biosynthesis. Adv. Drug Delivery Rev. 2003, 55(12): 1531–1546.CrossRefGoogle Scholar
  17. [17]
    Vincent, J. F. V. Structural Biomaterials; Princeton University Press: Princeton, NJ, 1990.Google Scholar
  18. [18]
    Ingber, D. E. Cellular mechanotransduction: Putting all the pieces together again. FASEB J. 2006, 20(7): 811–827.CrossRefGoogle Scholar
  19. [19]
    Lang, M. In Frontiers of Engineering: Reports on Leading-Edge Engineering from the 2007 Symposium; National Academy of Engineering of the National Academies, 2008.Google Scholar
  20. [20]
    Papapostolou, D.; Smith, A. M.; Atkins, D. T.; Oliver, S. J.; Ryadnov, M. G.; Serpell, L. C.; Woolfson, D. N. Engineering nanoscale order into a designed protein fiber. P. Natl. Acad. Sci. USA 2007, 104(26): 10853–10858.CrossRefGoogle Scholar
  21. [21]
    Langer, R.; Tirrell, D. A. Designing materials for biology and medicine. Nature 2004, 428(6982): 487–492.CrossRefGoogle Scholar
  22. [22]
    Smeenk, J. M.; Otten, M. B.; Thies, J.; Tirrell, D. A.; Stunnenberg H. G.; van Hest J. C. Controlled assembly of macromolecular beta-sheet fibrils. Angew. Chem. Int. Ed. Engl. 2005, 44(13): 1968–1971.CrossRefGoogle Scholar
  23. [23]
    Zhao, X. J.; Zhang, S. G. Molecular designer selfassembling peptides. Chem. Soc. Rev. 2006, 35(11): 1105–1110.CrossRefGoogle Scholar
  24. [24]
    Mershin, A.; Cook, B.; Kaiser, L.; Zhang, S. G. A classic assembly of nanobiomaterials. Nat. Biotechnol. 2005, 23(11): 1379–1380.CrossRefGoogle Scholar
  25. [25]
    Sotomayor, M.; Schulten, K. Single-molecule expzeriments in vitro and in silico. Science 2007, 316(5828): 1144–1148.CrossRefGoogle Scholar
  26. [26]
    Gautieri, A.; Buehler, M. J.; Redaelli, A. Deformation rate controls elasticity and unfolding pathway of single tropocollagen molecules. J. Mechanical Behavior of Biomedical Materials, in press. [online early access]. DOI: 10.1016/j.jmbbm.2008.03.001.Google Scholar
  27. [27]
    Ackbarow, T.; Chen, X. F.; Keten, S.; Buehler, M. J. Hierarchies, multiple energy barriers and robustness govern the fracture mechanics of alpha helical and betasheet protein domains. P. Natl. Acad. Sci. USA 2007, 104: 16410–16415CrossRefGoogle Scholar
  28. [28]
    Ackbarow, T.; Buehler, M. J. Nanopatterned protein domains unify strength and robustness through hierarchical structures, in submission.Google Scholar
  29. [29]
    Buehler, M. J. Nature designs tough collagen: Explaining the nanostructure of collagen fibrils. P. Natl. Acad. Sci. USA 2006, 103(33): 12285–12290.CrossRefGoogle Scholar
  30. [30]
    Schwaiger, I.; Sattler, C.; Hostetter, D. R.; Rief, M. The myosin coiled-coil is a truly elastic protein structure. Nat. Mater. 2002, 1(4): 232–235.CrossRefGoogle Scholar
  31. [31]
    Root, D. D.; Yadavalli, V. K.; Forbes, J. G.; Wang, K. Coiled-coil nanomechanics and uncoiling and unfolding of the superhelix and alpha helices of myosin. Biophys. J. 2006, 90(8): 2852–2866.CrossRefGoogle Scholar
  32. [32]
    Buehler, M. J. Hierarchical chemo-nanomechanics of stretching protein molecules: Entropic elasticity, protein unfolding and molecular fracture. J. Mech. Mater. Struct. 2007, 2(6): 1019–1057.CrossRefGoogle Scholar
  33. [33]
    Ackbarow, T.; Buehler, M. J. Superelasticity, energy dissipation and strain hardening of vimentin coiled-coil intermediate filaments: Atomistic and continuum studies. J. Mater. Sci. 2007, 42(21): 8771–8787.CrossRefGoogle Scholar
  34. [34]
    Buehler, M. J.; Wong, S. Y. Entropic elasticity controls nanomechanics of single tropocollagen molecules. Biophys. J. 2007, 93(1): 37–43.CrossRefGoogle Scholar
  35. [35]
    Buehler, M. J. Atomistic and continuum modeling of mechanical properties of collagen: Elasticity, fracture and self-assembly. J. Mater. Res. 2006, 21(8): 1947–1961.CrossRefGoogle Scholar
  36. [36]
    Cui, X. Q.; Li, C. M.; Zang, J. F.; Zhou, Q.; Gan, Y.; Bao, H. F.; Guo, J.; Biocatalytic generation of ppy-enzyme-CNT nanocomposite: From network assembly to film growth. J. Phys. Chem. C 2007, 111(5): 2025–2031.CrossRefGoogle Scholar
  37. [37]
    Winey, K. I.; Vaia R. A. Polymer nanocomposites. MRS Bulletin 2007, 32(4): 5.Google Scholar

Copyright information

© Tsinghua Press and Springer-Verlag GmbH 2008

Authors and Affiliations

  1. 1.Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental EngineeringMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations