Ventilation efficiency assessment according to the variation of opening position in L-shaped rooms

  • Mario Rabanillo-Herrero
  • Miguel Ángel Padilla-MarcosEmail author
  • Jesús Feijó-Muñoz
  • Raquel Gil-Valverde
  • Alberto Meiss
Research Article


Air change efficiency evaluates the ability of a system to achieve the change of the air contained in a confined interior space. It is conditioned by the geometry of the room, the different openings and the properties of the air among others. Rectangular rooms do not offer impediments when mixing the interior air; however, in rooms with non-regular shapes, stagnation phenomenon can occur in the corners. This paper proposes the study of the air change efficiency in an L-shaped room in which the position of the inlet and outlet openings is sequentially variated. This study is based on the execution of successive numerical simulations, validated by experimental studies. The results show that there are differences on the ventilation efficiency of up to 13.49% between the most dissimilar cases, which occur when one of the openings is located in a corner. If the other opening is placed nearby, the results are very poor; whereas if it is placed at the opposite corner, the efficiency value improves due to the circulation of the air through the room. When these openings are placed near the centre of the room, the efficiencies that are obtained are more similar and this analysis is less relevant.


natural ventilation indoor air quality (IAQ) ventilation efficiency computational fluid dynamics (CFD) air movement building geometry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This study was funded by TCUE: Transferencia de Conocimiento Universidad-Empresa (No. TCUE.6-LANZADERA 067/157541).


  1. ANSYS (2017). ANSYS FLUENT 18.1 User’s Guide.Google Scholar
  2. ASTM International (2017). ASTM E741-11. Standard Test Method for Determining Air Change in a Single Zone by Means of a Tracer Gas Dilution. Available at Google Scholar
  3. Camino Olea MS, Feijó-Muñoz J, Basterra Otero A, Carbayo Baz FJ, García Barrero R (2005). Diseño y construcción de un laboratorio para el análisis de la ventilación. In: Proceedings of I Jornadas Investig. En Construcción. (in Spanish)Google Scholar
  4. Chao CYH, Tung TCW, Burnett J (1997). Influence of ventilation on indoor radon level. Building and Environment, 32: 527–534.CrossRefGoogle Scholar
  5. Chow W, Fung W, Wong L (2002). Preliminary studies on a new method for assessing ventilation in large spaces. Building and Environment, 37: 145–152.CrossRefGoogle Scholar
  6. Davidson L, Olsson E (1987). Calculation of age and local purging flow rate in rooms. Building and Environment, 22: 111–127.CrossRefGoogle Scholar
  7. European Committee for Standardization (2004). EN 13141-1. Ventilation for buildings-Performance testing of components/products for residential ventilation-Part 1: Externally and internally mounted air transfer devices. European Committee for Standardization.Google Scholar
  8. Eurostat (2015). Final energy consumption by sector and fuel. European Environment Agency.Google Scholar
  9. Lee K, Choi S (2002). Effect of geometric parameters on ventilation performance in a dry room. Drying Technology, 20: 1445–1461.CrossRefGoogle Scholar
  10. Li X, Wang X, Li X, Li Y (1999). Investigation on the relationship between flow pattern and air age. In: Proceedings of the 6th International IBPSA Building Simulation Conference, Kyoto, Japan.Google Scholar
  11. Liddament MW (1996). A Guide to Energy Efficient Ventilation, Coventry: Air Infiltration and Ventilation Centre.Google Scholar
  12. Meiss A, Feijó-Muñoz J (2011). Influencia de la ubicación de las aberturas en la eficiencia de la ventilación en viviendas. Informes De La Construcción, 63: 53–60. (in Spanish)CrossRefGoogle Scholar
  13. Meiss A, Feijó-Muñoz J, García-Fuentes MA (2013). Age-of-the-air in rooms according to the environmental condition of temperature: A case study. Energy and Buildings, 67: 88–96.CrossRefGoogle Scholar
  14. Ministry of Development (2017). Documento Básico HS - Salubridad. Ministerio de Fomento - Gobierno de España. (in Spanish)Google Scholar
  15. Mundt E, Martin Mathisen H, Nielsen P.V, Moser A (2004). Guidebook No.02: Ventilation Effectiveness. Federation of European Heating and Air-conditioning Associations (REHVA), Helsinki, Finland.Google Scholar
  16. Murakami S, Mochida A (1988). 3-D numerical simulation of airflow around a cubic model by means of the model. Journal of Wind Engineering and Industrial Aerodynamics, 31: 283–303.CrossRefGoogle Scholar
  17. Nielsen PV, Allard F, Awbi HB, Davidson L, Schälin A (2007). Guidebook No.10: Computational Fluid Dynamics in Ventilation Design. Federation of European Heating and Air-conditioning Associations (REHVA), Helsinki, Finland.Google Scholar
  18. Noh K-C, Han C-W, Oh M-D (2008). Effect of the airflow rate of a ceiling type air-conditioner on ventilation effectiveness in a lecture room. International Journal of Refrigeration, 31: 180–188.CrossRefGoogle Scholar
  19. Pérez-Lombard L, Ortiz J, Pout C (2008). A review on buildings energy consumption information. Energy and Buildings, 40: 394–398.CrossRefGoogle Scholar
  20. Richtmyer RD, Morton KW (1967). Difference Methods for Initial-value Problems. New York: Wiley Interscience.zbMATHGoogle Scholar
  21. Sandberg M (1981). What is ventilation efficiency? Building and Environment, 16: 123–135.CrossRefGoogle Scholar
  22. Sandberg M, Sjöberg M (1983). The use of moments for assessing air quality in ventilated rooms. Building and Environment, 18: 181–197.CrossRefGoogle Scholar
  23. SECH Project-SpaHousec (2011). Analyses of the energy consumption of the household sector in Spain. Final Report. El Instituto para la Diversificación y Ahorro de la Energía.Google Scholar
  24. Dijkstra HA (2015). Ventilation efficiency in an L-shaped room. Master Thesis, Eindhoven University of Technology, Netherlands.Google Scholar
  25. Tham KW (2016). Indoor air quality and its effects on humans-A review of challenges and developments in the last 30 years. Energy and Buildings, 130: 637–650.CrossRefGoogle Scholar
  26. Tian L, Lin Z, Liu J, Yao T, Wang Q (2011). The impact of temperature on mean local air age and thermal comfort in a stratum ventilated office. Building and Environment, 46: 501–510.CrossRefGoogle Scholar
  27. Von Kármán T (1930). Mechanische Ähnlichkeit und Turbulenz. Nachrichten von Der Gesellschaft Der Wissenschaften Zu Göttingen, Fachgruppe 1 (Mathematik), 5: 58–76.Google Scholar
  28. Yakhot V, Orszag SA (1986). Renormalization group analysis of turbulence. I. Basic theory. Journal of Scientific Computing, 1: 3–51.MathSciNetCrossRefzbMATHGoogle Scholar
  29. Zheng X, Shi Z, Xuan Z, Qian H (2018). Natural ventilation. In: Wang R, Zhai X (eds), Handbook of Energy Systems in Green Buildings. Berlin: Springer. pp. 1227–1270.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Mario Rabanillo-Herrero
    • 1
  • Miguel Ángel Padilla-Marcos
    • 2
    Email author
  • Jesús Feijó-Muñoz
    • 1
  • Raquel Gil-Valverde
    • 1
  • Alberto Meiss
    • 1
  1. 1.G.I.R. Arquitectura & Energía, E.T.S. ArquitecturaUniversidad de ValladolidValladolidSpain
  2. 2.HPA Lab, Built EnvironmentUniversity of New South WalesSydneyAustralia

Personalised recommendations