Advertisement

On the impact of local microclimate on building performance simulation. Part I: Prediction of building external conditions

  • Lucie MerlierEmail author
  • Loïc Frayssinet
  • Kévyn Johannes
  • Frédéric Kuznik
Research Article Building Thermal, Lighting, and Acoustics Modeling
  • 17 Downloads

Abstract

To better predict the effective energy performance of buildings in cities, this study addresses the modelling of local external radiative, thermal and aeraulic conditions. After reviewing existing modelling approaches that are suitable for estimating the building boundary conditions in energy simulation, this paper analyses external conditions derived from a building energy model (BuildSysPro) or a microclimatic model (SOLENE microclimat). Comparisons are made for the different faces of a generic building standing alone or located in an urban environment, with or without a thermally efficient envelope. When the modelling approach is adjusted, the results highlight significant deviations on the estimated radiative temperatures and wind-based quantities around the isolated building. When accounting for surrounding buildings, the results show a substantial reduction in short-wave radiative fluxes, which is explained by an imbalance between solar masks and multireflections, and a reduction in the wind-driven ventilation potential.

Keywords

urban micro-climate building external conditions microclimatic simulation building energy simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors warmly thank Jean-Luc Hubert and Maya Milliez from EDF R&D and the BHEE for their support during this work, as well as the CRENAU laboratory for providing SOLENE microclimat.

References

  1. Allegrini J, Dorer V, Carmeliet J (2012). Influence of the urban microclimate in street canyons on the energy demand for space cooling and heating of buildings. Energy and Buildings, 55: 823–832.CrossRefGoogle Scholar
  2. Allegrini J, Kämpf JH, Dorer V, Carmeliet J (2013). Modelling the urban microclimate and its influence on building energy demands of an urban neighbourhood. In: Proceedings of CISBAT 2013 Cleantech for Smart Cities and Buildings. Vol. 2. EPFL Solar Energy and Building Physics Laboratory (LESO-PB), pp. 867–872.Google Scholar
  3. Allegrini J, Orehounig K, Mavromatidis G, Ruesch F, Dorer V, Evins R (2015). A review of modelling approaches and tools for the simulation of district-scale energy systems. Renewable and Sustainable Energy Reviews, 52: 1391–1404.CrossRefGoogle Scholar
  4. Blocken B (2015). Computational Fluid Dynamics for urban physics: Importance, scales, possibilities, limitations and ten tips and tricks towards accurate and reliable simulations. Building and Environment, 91: 219–245.CrossRefGoogle Scholar
  5. Bontemps S, Kaemmerlen A, Blatman G, Mora L (2013). Reliability of dynamic simulation models for building energy in the context of low-energy buildings. In: Proceedings of the 13th International IBPSA Building Simulation Conference, Chambéry, France.Google Scholar
  6. Bontemps S, Mora L, Schumann M (2016). Validation expérimentale appliquée à la modélisation d’une cellule test de type basse consommation. In: Proceedings of the IBPSA France Conference, Marne-la-Vallée, France.Google Scholar
  7. Bouyer J, Inard C, Musy M (2011). Microclimatic coupling as a solution to improve building energy simulation in an urban context. Energy and Buildings, 43: 1549–1559.CrossRefGoogle Scholar
  8. Bozonnet E (2006). Les microclimats urbains et la demande énergétique du bâti. In: Proceedings of 24émes Rencontres Universitaires de Génie Civil. (in French)Google Scholar
  9. Bozonnet E, Musy M, Calmet I, Rodriguez F (2015). Modeling methods to assess urban fluxes and heat island mitigation measures from street to city scale. International Journal of Low-Carbon Technologies, 10: 62–77.CrossRefGoogle Scholar
  10. Bruse M (2004). Envi-met 3.0: Updated Model Overview. Available at https://doi.org/envi-met.net/documents/papers/overview30.pdf
  11. Bueno B, Norford L, Hidalgo J, Pigeon G (2013). The urban weather generator. Journal of Building Performance Simulation, 6: 269–281.CrossRefGoogle Scholar
  12. BuildSysPro (2018). Documentation, EDF R & D.Google Scholar
  13. Chen H, Ooka R, Harayama K, Kato S, Li X (2004). Study on outdoor thermal environment of apartment block in Shenzhen, China with coupled simulation of convection, radiation and conduction. Energy and Buildings, 36: 1247–1258.CrossRefGoogle Scholar
  14. Clarke J (2007). Energy Simulation in Building Design. Abingdon, UK: Routledge.CrossRefGoogle Scholar
  15. CNRM-UMR (2018). CNRM-UMR 3589. Town Energy Balance website. Available at https://doi.org/www.umr-cnrm.fr/spip.php?article199
  16. Cóstola D, Blocken B, Hensen JLM (2009). Overview of pressure coefficient data in building energy simulation and airflow network programs. Building and Environment, 44: 2027–2036.CrossRefGoogle Scholar
  17. CSTB (2012). RT2012: Régles Th-U, fascicule 4: Parois opaques.Google Scholar
  18. de la Flor FS, Domínguez SA (2004). Modelling microclimate in urban environments and assessing its influence on the performance of surrounding buildings. Energy and Buildings, 36: 403–413.CrossRefGoogle Scholar
  19. EnergyPlus (2018). Documentation, U.S. Department of Energy.Google Scholar
  20. Franke J (2006). Recommendations of the COST action C14 on the use of CFD in predicting pedestrian wind environment. In: Proceedings of the 4th International Symposium on Computational Wind Engineering, Yokohama, Japan, pp. 529–532.Google Scholar
  21. Frayssinet L, Merlier L, Kuznik F, Hubert J-L, Milliez M, Roux J-J (2017). Modeling the heating and cooling energy demand of urban buildings at city scale. Renewable and Sustainable Energy Reviews, 81: 2318–2327.CrossRefGoogle Scholar
  22. Ghiaus C, Allard F, Santamouris M, Georgakis C, Nicol F (2006). Urban environment influence on natural ventilation potential. Building and Environment, 41: 395–406.CrossRefGoogle Scholar
  23. Goffart J (2016). Donnäes d’entrée: climat. In: Energétique des bâtiments et simulation thermique. Blanche BTP. Eyrolles, pp. 231–240.Google Scholar
  24. Gros A, Bozonnet E, Inard C, Musy M (2016). Simulation tools to assess microclimate and building energy: A case study on the design of a new district. Energy and Buildings, 114: 112–122.CrossRefGoogle Scholar
  25. Jokisalo J, Kurnitski J, Korpi M, Kalamees T, Vinha J (2009). Building leakage, infiltration, and energy performance analyses for Finnish detached houses. Building and Environment, 44: 377–387.CrossRefGoogle Scholar
  26. Le Bras J, Masson V (2015). A fast and spatialized urban weather generator for long-term urban studies at the city-scale. Frontiers in Earth Science, 3: 27.CrossRefGoogle Scholar
  27. Lemonsu A, Grimmond CSB, Masson V (2004). Modeling the surface energy balance of the core of an old mediterranean city: Marseille. Journal of Applied Meteorology, 43: 312–327.CrossRefGoogle Scholar
  28. Malys L, Musy M, Inard C (2015). Microclimate and building energy consumption: Study of different coupling methods. Advances in Building Energy Research, 9: 151–174.CrossRefGoogle Scholar
  29. Masson V (2000). A physically-based scheme for the urban energy budget in atmospheric models. Boundary-Layer Meteorology, 94: 357–397.CrossRefGoogle Scholar
  30. Masson V, Marchadier C, Adolphe L, Aguejdad R, Avner P, Bonhomme M, Bretagne G, Briottet X, Bueno B, de Munck C, et al. (2014). Adapting cities to climate change: A systemic modelling approach. Urban Climate, 10: 407–429.CrossRefGoogle Scholar
  31. Merlier L, Kuznik F, Rusaouën G, Salat S (2018). Derivation of generic typologies for microscale urban airflow studies. Sustainable Cities and Society, 36: 71–80.CrossRefGoogle Scholar
  32. Merlier L, Frayssinet L, Johannes K, Kuznik F (2019). On the impact of local microclimate on building performance simulation. Part II: Effect of external conditions on the dynamic thermal behavior of buildings. Building Simulation, https://doi.org/10.1007/s12273-019-0508-6.
  33. Météo France (2017). Météo et climat: données climatiques de la station de lyon.Google Scholar
  34. Mirsadeghi M, Cóstola D, Blocken B, Hensen JLM (2013). Review of external convective heat transfer coefficient models in building energy simulation programs: Implementation and uncertainty. Applied Thermal Engineering, 56: 134–151.CrossRefGoogle Scholar
  35. Moonen P, Defraeye T, Dorer V, Blocken B, Carmeliet J (2012). Urban Physics: Effect of the micro-climate on comfort, health and energy demand. Frontiers of Architectural Research, 1: 197–228.CrossRefGoogle Scholar
  36. Morille B, Lauzet N, Musy M (2015). SOLENE-microclimate: A tool to evaluate envelopes efficiency on energy consumption at district scale. Energy Procedia, 78: 1165–1170.CrossRefGoogle Scholar
  37. Musy M, Bozonnet E (2016). Données d’entrée: Microclimat et environnement proche. In: Energétique des bâtiments et simulation thermique. Blanche BTP. Eyrolles, pp. 240–256.Google Scholar
  38. Musy M, Calmet I, Bozonnet E, Rodriguez F (2012). Modélisation des interactions ville climat energie. Références Modélisation urbaine: de la représentation au projet, 16–33.Google Scholar
  39. Musy M, Malys L, Morille B, Inard C (2015). The use of SOLENE-microclimat model to assess adaptation strategies at the district scale. Urban Climate, 14: 213–223.CrossRefGoogle Scholar
  40. Nunez M, Oke TR (1977). The energy balance of an urban canyon. Journal of Applied Meteorology, 16: 11–19.CrossRefGoogle Scholar
  41. Oke TR (1982). The energetic basis of the urban heat island. Quarterly Journal of the Royal Meteorological Society, 108(455): 1–24.Google Scholar
  42. Oke TR (2002). Boundary Layer Climates, 2nd edn. Abingdon, UK: Routlege.CrossRefGoogle Scholar
  43. Penicaud H (2016). Introduction. In: Energétique des bâtiments et simulation thermique. Blanche BTP. Eyrolles. pp. 17–21.Google Scholar
  44. Pigeon G, Zibouche K, Bueno B, Le Bras J, Masson V (2014). Improving the capabilities of the Town Energy Balance model with up-to-date building energy simulation algorithms: An application to a set of representative buildings in Paris. Energy and Buildings, 76: 1–14.CrossRefGoogle Scholar
  45. Plessis G, Kaemmerlen A, Lindsay A (2014). BuildSysPro: A Modelica library for modelling buildings and energy systems. In: Proceedings of the 10th International Modelica Conference, Lund, Sweden, pp. 1161–1169.Google Scholar
  46. Ramponi R, Gaetani I, Angelotti A (2014). Influence of the urban environment on the effectiveness of natural night-ventilation of an office building. Energy and Buildings, 78: 25–34.CrossRefGoogle Scholar
  47. Robinson D, Haldi F, Kämpf J, Leroux P, Perez D, Rasheed A, Wilke U (2009). CitySim: Comprehensive micro-simulation of resource flows for sustainable urban planning. In: Proceedings of the 11th International IBPSA Building Simulation Conference, Glasgow, UK, pp. 1083–1090.Google Scholar
  48. Rochard U, Shanthirablan S, Brejon C, Chateau le Bras M (2015). Bâtiments résidentiels: Typologie du parc existant et solutions exemplaires pour la rénovation énergétique en France. Technical Report.Google Scholar
  49. Rodler A, Guernouti S, Musy M, Bouyer J (2018). Thermal behaviour of a building in its environment: Modelling, experimentation, and comparison. Energy and Buildings, 168: 19–34.CrossRefGoogle Scholar
  50. Roux J, Kuznik F (2016). Modélisation thermique du bâtiment. In: Energétique des bâtiments et simulation thermique. Blanche BTP. Eyrolles. pp. 26–43.Google Scholar
  51. Santamouris M (2014). On the energy impact of urban heat island and global warming on buildings. Energy and Buildings, 82: 100–113.CrossRefGoogle Scholar
  52. Santamouris M, Cartalis C, Synnefa A, Kolokotsa D (2015). On the impact of urban heat island and global warming on the power demand and electricity consumption of buildings: A review. Energy and Buildings, 98: 119–124.CrossRefGoogle Scholar
  53. Santamouris M, Papanikolaou N, Livada I, Koronakis I, Georgakis C, Argiriou A, Assimakopoulos DN (2001). On the impact of urban climate on the energy consumption of buildings. Solar Energy, 70: 201–216.CrossRefGoogle Scholar
  54. Schlünzen KH, Grawe D, Bohnenstengel SI, Schlüter I, Koppmann R (2011). Joint modelling of obstacle induced and mesoscale changes—Current limits and challenges. Journal of Wind Engineering and Industrial Aerodynamics, 99: 217–225.CrossRefGoogle Scholar
  55. Schumann M, Charrier B, Plessis G, Wall-Ribot B (2016). BuildSysPro un bibliothéque Modelica open source pour l’énergétique des bâtiments et des quartiers. In: Proceedings of the IBPSA France Conference. Marne-la-Vallée, France.Google Scholar
  56. Sun Y, Heo Y, Xie H, Tan M, Wu J, Augenbroe G (2011). Uncertainity quantification of microclimate variables in building energy simulation. In: Proceedings of the 12th International IBPSA Building Simulation Conference, Sydney, Australia, pp. 2423–2430.Google Scholar
  57. Sun Y, Augenbroe G (2014). Urban heat island effect on energy application studies of office buildings. Energy and Buildings, 77: 171–179.CrossRefGoogle Scholar
  58. Sun Y, Heo Y, Tan M, Xie H, Jeff Wu C, Augenbroe G (2014). Uncertainty quantification of microclimate variables in building energy models. Journal of Building Performance Simulation, 7: 17–32.CrossRefGoogle Scholar
  59. Tominaga Y, Mochida A, Yoshie R, Kataoka H, Nozu T, Yoshikawa M, Shirasawa T (2008). AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings. Journal of Wind Engineering and Industrial Aerodynamics, 96: 1749–1761.CrossRefGoogle Scholar
  60. Toparlar Y, Blocken B, Maiheu B, van Heijst GJF (2017). A review on the CFD analysis of urban microclimate. Renewable and Sustainable Energy Reviews, 80: 1613–1640.CrossRefGoogle Scholar
  61. Yang X, Zhao L, Bruse M, Meng Q (2012). An integrated simulation method for building energy performance assessment in urban environments. Energy and Buildings, 54: 243–251.CrossRefGoogle Scholar
  62. Yi YK, Feng N (2013). Dynamic integration between building energy simulation (BES) and computational fluid dynamics (CFD) simulation for building exterior surface. Building Simulation, 6: 297–308.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Lucie Merlier
    • 1
    • 2
    Email author
  • Loïc Frayssinet
    • 1
    • 2
  • Kévyn Johannes
    • 1
    • 2
  • Frédéric Kuznik
    • 1
    • 2
  1. 1.Univ Lyon, CNRS, INSA-LyonUniversité Claude Bernard Lyon 1, CETHIL UMR5008VilleurbanneFrance
  2. 2.BHEE: High Energy Efficiency Buildings, joint laboratory CETHIL / EDFVilleurbanne cedexFrance

Personalised recommendations